Solve for x
x = \frac{5 \sqrt{85} + 55}{9} \approx 11.233080254
x=\frac{55-5\sqrt{85}}{9}\approx 0.989141968
Graph
Share
Copied to clipboard
0.5x-1=-0.6x+0.09x^{2}
Subtract 1 from both sides.
0.5x-1+0.6x=0.09x^{2}
Add 0.6x to both sides.
1.1x-1=0.09x^{2}
Combine 0.5x and 0.6x to get 1.1x.
1.1x-1-0.09x^{2}=0
Subtract 0.09x^{2} from both sides.
-0.09x^{2}+1.1x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1.1±\sqrt{1.1^{2}-4\left(-0.09\right)\left(-1\right)}}{2\left(-0.09\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -0.09 for a, 1.1 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1.1±\sqrt{1.21-4\left(-0.09\right)\left(-1\right)}}{2\left(-0.09\right)}
Square 1.1 by squaring both the numerator and the denominator of the fraction.
x=\frac{-1.1±\sqrt{1.21+0.36\left(-1\right)}}{2\left(-0.09\right)}
Multiply -4 times -0.09.
x=\frac{-1.1±\sqrt{1.21-0.36}}{2\left(-0.09\right)}
Multiply 0.36 times -1.
x=\frac{-1.1±\sqrt{0.85}}{2\left(-0.09\right)}
Add 1.21 to -0.36 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-1.1±\frac{\sqrt{85}}{10}}{2\left(-0.09\right)}
Take the square root of 0.85.
x=\frac{-1.1±\frac{\sqrt{85}}{10}}{-0.18}
Multiply 2 times -0.09.
x=\frac{\sqrt{85}-11}{-0.18\times 10}
Now solve the equation x=\frac{-1.1±\frac{\sqrt{85}}{10}}{-0.18} when ± is plus. Add -1.1 to \frac{\sqrt{85}}{10}.
x=\frac{55-5\sqrt{85}}{9}
Divide \frac{-11+\sqrt{85}}{10} by -0.18 by multiplying \frac{-11+\sqrt{85}}{10} by the reciprocal of -0.18.
x=\frac{-\sqrt{85}-11}{-0.18\times 10}
Now solve the equation x=\frac{-1.1±\frac{\sqrt{85}}{10}}{-0.18} when ± is minus. Subtract \frac{\sqrt{85}}{10} from -1.1.
x=\frac{5\sqrt{85}+55}{9}
Divide \frac{-11-\sqrt{85}}{10} by -0.18 by multiplying \frac{-11-\sqrt{85}}{10} by the reciprocal of -0.18.
x=\frac{55-5\sqrt{85}}{9} x=\frac{5\sqrt{85}+55}{9}
The equation is now solved.
0.5x+0.6x=1+0.09x^{2}
Add 0.6x to both sides.
1.1x=1+0.09x^{2}
Combine 0.5x and 0.6x to get 1.1x.
1.1x-0.09x^{2}=1
Subtract 0.09x^{2} from both sides.
-0.09x^{2}+1.1x=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-0.09x^{2}+1.1x}{-0.09}=\frac{1}{-0.09}
Divide both sides of the equation by -0.09, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{1.1}{-0.09}x=\frac{1}{-0.09}
Dividing by -0.09 undoes the multiplication by -0.09.
x^{2}-\frac{110}{9}x=\frac{1}{-0.09}
Divide 1.1 by -0.09 by multiplying 1.1 by the reciprocal of -0.09.
x^{2}-\frac{110}{9}x=-\frac{100}{9}
Divide 1 by -0.09 by multiplying 1 by the reciprocal of -0.09.
x^{2}-\frac{110}{9}x+\left(-\frac{55}{9}\right)^{2}=-\frac{100}{9}+\left(-\frac{55}{9}\right)^{2}
Divide -\frac{110}{9}, the coefficient of the x term, by 2 to get -\frac{55}{9}. Then add the square of -\frac{55}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{110}{9}x+\frac{3025}{81}=-\frac{100}{9}+\frac{3025}{81}
Square -\frac{55}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{110}{9}x+\frac{3025}{81}=\frac{2125}{81}
Add -\frac{100}{9} to \frac{3025}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{55}{9}\right)^{2}=\frac{2125}{81}
Factor x^{2}-\frac{110}{9}x+\frac{3025}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{55}{9}\right)^{2}}=\sqrt{\frac{2125}{81}}
Take the square root of both sides of the equation.
x-\frac{55}{9}=\frac{5\sqrt{85}}{9} x-\frac{55}{9}=-\frac{5\sqrt{85}}{9}
Simplify.
x=\frac{5\sqrt{85}+55}{9} x=\frac{55-5\sqrt{85}}{9}
Add \frac{55}{9} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}