0.52 \% x+0.8 \% x-14=15
Solve for x
x = \frac{72500}{33} = 2196\frac{32}{33} \approx 2196.96969697
Graph
Share
Copied to clipboard
\frac{52}{10000}x+\frac{0.8}{100}x-14=15
Expand \frac{0.52}{100} by multiplying both numerator and the denominator by 100.
\frac{13}{2500}x+\frac{0.8}{100}x-14=15
Reduce the fraction \frac{52}{10000} to lowest terms by extracting and canceling out 4.
\frac{13}{2500}x+\frac{8}{1000}x-14=15
Expand \frac{0.8}{100} by multiplying both numerator and the denominator by 10.
\frac{13}{2500}x+\frac{1}{125}x-14=15
Reduce the fraction \frac{8}{1000} to lowest terms by extracting and canceling out 8.
\frac{33}{2500}x-14=15
Combine \frac{13}{2500}x and \frac{1}{125}x to get \frac{33}{2500}x.
\frac{33}{2500}x=15+14
Add 14 to both sides.
\frac{33}{2500}x=29
Add 15 and 14 to get 29.
x=29\times \frac{2500}{33}
Multiply both sides by \frac{2500}{33}, the reciprocal of \frac{33}{2500}.
x=\frac{29\times 2500}{33}
Express 29\times \frac{2500}{33} as a single fraction.
x=\frac{72500}{33}
Multiply 29 and 2500 to get 72500.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}