Solve for x (complex solution)
x=\frac{-479+i\times 3\sqrt{2951}}{80}\approx -5.9875+2.037116528i
x=\frac{-i\times 3\sqrt{2951}-479}{80}\approx -5.9875-2.037116528i
Graph
Share
Copied to clipboard
0.5x-20x^{2}=240x+800
Subtract 20x^{2} from both sides.
0.5x-20x^{2}-240x=800
Subtract 240x from both sides.
-239.5x-20x^{2}=800
Combine 0.5x and -240x to get -239.5x.
-239.5x-20x^{2}-800=0
Subtract 800 from both sides.
-20x^{2}-239.5x-800=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-239.5\right)±\sqrt{\left(-239.5\right)^{2}-4\left(-20\right)\left(-800\right)}}{2\left(-20\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -20 for a, -239.5 for b, and -800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-239.5\right)±\sqrt{57360.25-4\left(-20\right)\left(-800\right)}}{2\left(-20\right)}
Square -239.5 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-239.5\right)±\sqrt{57360.25+80\left(-800\right)}}{2\left(-20\right)}
Multiply -4 times -20.
x=\frac{-\left(-239.5\right)±\sqrt{57360.25-64000}}{2\left(-20\right)}
Multiply 80 times -800.
x=\frac{-\left(-239.5\right)±\sqrt{-6639.75}}{2\left(-20\right)}
Add 57360.25 to -64000.
x=\frac{-\left(-239.5\right)±\frac{3\sqrt{2951}i}{2}}{2\left(-20\right)}
Take the square root of -6639.75.
x=\frac{239.5±\frac{3\sqrt{2951}i}{2}}{2\left(-20\right)}
The opposite of -239.5 is 239.5.
x=\frac{239.5±\frac{3\sqrt{2951}i}{2}}{-40}
Multiply 2 times -20.
x=\frac{479+3\sqrt{2951}i}{-40\times 2}
Now solve the equation x=\frac{239.5±\frac{3\sqrt{2951}i}{2}}{-40} when ± is plus. Add 239.5 to \frac{3i\sqrt{2951}}{2}.
x=\frac{-3\sqrt{2951}i-479}{80}
Divide \frac{479+3i\sqrt{2951}}{2} by -40.
x=\frac{-3\sqrt{2951}i+479}{-40\times 2}
Now solve the equation x=\frac{239.5±\frac{3\sqrt{2951}i}{2}}{-40} when ± is minus. Subtract \frac{3i\sqrt{2951}}{2} from 239.5.
x=\frac{-479+3\sqrt{2951}i}{80}
Divide \frac{479-3i\sqrt{2951}}{2} by -40.
x=\frac{-3\sqrt{2951}i-479}{80} x=\frac{-479+3\sqrt{2951}i}{80}
The equation is now solved.
0.5x-20x^{2}=240x+800
Subtract 20x^{2} from both sides.
0.5x-20x^{2}-240x=800
Subtract 240x from both sides.
-239.5x-20x^{2}=800
Combine 0.5x and -240x to get -239.5x.
-20x^{2}-239.5x=800
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-20x^{2}-239.5x}{-20}=\frac{800}{-20}
Divide both sides by -20.
x^{2}+\left(-\frac{239.5}{-20}\right)x=\frac{800}{-20}
Dividing by -20 undoes the multiplication by -20.
x^{2}+11.975x=\frac{800}{-20}
Divide -239.5 by -20.
x^{2}+11.975x=-40
Divide 800 by -20.
x^{2}+11.975x+5.9875^{2}=-40+5.9875^{2}
Divide 11.975, the coefficient of the x term, by 2 to get 5.9875. Then add the square of 5.9875 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+11.975x+35.85015625=-40+35.85015625
Square 5.9875 by squaring both the numerator and the denominator of the fraction.
x^{2}+11.975x+35.85015625=-4.14984375
Add -40 to 35.85015625.
\left(x+5.9875\right)^{2}=-4.14984375
Factor x^{2}+11.975x+35.85015625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5.9875\right)^{2}}=\sqrt{-4.14984375}
Take the square root of both sides of the equation.
x+5.9875=\frac{3\sqrt{2951}i}{80} x+5.9875=-\frac{3\sqrt{2951}i}{80}
Simplify.
x=\frac{-479+3\sqrt{2951}i}{80} x=\frac{-3\sqrt{2951}i-479}{80}
Subtract 5.9875 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}