Solve for x
x=\sqrt{2}+1\approx 2.414213562
x=1-\sqrt{2}\approx -0.414213562
Graph
Share
Copied to clipboard
0.5x^{2}-x=0.5
Subtract x from both sides.
0.5x^{2}-x-0.5=0
Subtract 0.5 from both sides.
\frac{1}{2}x^{2}-x-0.5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-4\times \frac{1}{2}\left(-0.5\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -1 for b, and -0.5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-2\left(-0.5\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-\left(-1\right)±\sqrt{1+1}}{2\times \frac{1}{2}}
Multiply -2 times -0.5.
x=\frac{-\left(-1\right)±\sqrt{2}}{2\times \frac{1}{2}}
Add 1 to 1.
x=\frac{1±\sqrt{2}}{2\times \frac{1}{2}}
The opposite of -1 is 1.
x=\frac{1±\sqrt{2}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{\sqrt{2}+1}{1}
Now solve the equation x=\frac{1±\sqrt{2}}{1} when ± is plus. Add 1 to \sqrt{2}.
x=\sqrt{2}+1
Divide 1+\sqrt{2} by 1.
x=\frac{1-\sqrt{2}}{1}
Now solve the equation x=\frac{1±\sqrt{2}}{1} when ± is minus. Subtract \sqrt{2} from 1.
x=1-\sqrt{2}
Divide 1-\sqrt{2} by 1.
x=\sqrt{2}+1 x=1-\sqrt{2}
The equation is now solved.
0.5x^{2}-x=0.5
Subtract x from both sides.
\frac{1}{2}x^{2}-x=\frac{1}{2}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{2}x^{2}-x}{\frac{1}{2}}=\frac{\frac{1}{2}}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\left(-\frac{1}{\frac{1}{2}}\right)x=\frac{\frac{1}{2}}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}-2x=\frac{\frac{1}{2}}{\frac{1}{2}}
Divide -1 by \frac{1}{2} by multiplying -1 by the reciprocal of \frac{1}{2}.
x^{2}-2x=1
Divide \frac{1}{2} by \frac{1}{2} by multiplying \frac{1}{2} by the reciprocal of \frac{1}{2}.
x^{2}-2x+1=1+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=2
Add 1 to 1.
\left(x-1\right)^{2}=2
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{2}
Take the square root of both sides of the equation.
x-1=\sqrt{2} x-1=-\sqrt{2}
Simplify.
x=\sqrt{2}+1 x=1-\sqrt{2}
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}