Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}x^{2}+\frac{1}{2}x=200
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\frac{1}{2}x^{2}+\frac{1}{2}x-200=200-200
Subtract 200 from both sides of the equation.
\frac{1}{2}x^{2}+\frac{1}{2}x-200=0
Subtracting 200 from itself leaves 0.
x=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\times \frac{1}{2}\left(-200\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, \frac{1}{2} for b, and -200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\times \frac{1}{2}\left(-200\right)}}{2\times \frac{1}{2}}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-2\left(-200\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+400}}{2\times \frac{1}{2}}
Multiply -2 times -200.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1601}{4}}}{2\times \frac{1}{2}}
Add \frac{1}{4} to 400.
x=\frac{-\frac{1}{2}±\frac{\sqrt{1601}}{2}}{2\times \frac{1}{2}}
Take the square root of \frac{1601}{4}.
x=\frac{-\frac{1}{2}±\frac{\sqrt{1601}}{2}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{\sqrt{1601}-1}{2}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{\sqrt{1601}}{2}}{1} when ± is plus. Add -\frac{1}{2} to \frac{\sqrt{1601}}{2}.
x=\frac{-\sqrt{1601}-1}{2}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{\sqrt{1601}}{2}}{1} when ± is minus. Subtract \frac{\sqrt{1601}}{2} from -\frac{1}{2}.
x=\frac{\sqrt{1601}-1}{2} x=\frac{-\sqrt{1601}-1}{2}
The equation is now solved.
\frac{1}{2}x^{2}+\frac{1}{2}x=200
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{2}x^{2}+\frac{1}{2}x}{\frac{1}{2}}=\frac{200}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\frac{\frac{1}{2}}{\frac{1}{2}}x=\frac{200}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}+x=\frac{200}{\frac{1}{2}}
Divide \frac{1}{2} by \frac{1}{2} by multiplying \frac{1}{2} by the reciprocal of \frac{1}{2}.
x^{2}+x=400
Divide 200 by \frac{1}{2} by multiplying 200 by the reciprocal of \frac{1}{2}.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=400+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=400+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{1601}{4}
Add 400 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{1601}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{1601}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{1601}}{2} x+\frac{1}{2}=-\frac{\sqrt{1601}}{2}
Simplify.
x=\frac{\sqrt{1601}-1}{2} x=\frac{-\sqrt{1601}-1}{2}
Subtract \frac{1}{2} from both sides of the equation.