Solve for y
y=-\frac{20\sqrt{5362}}{2681}+2.3\approx 1.753743539
y=\frac{20\sqrt{5362}}{2681}+2.3\approx 2.846256461
Graph
Share
Copied to clipboard
10^{-3}=350\times 3.83\times 10^{-7}\times 25\left(3-y-0.7\right)^{2}
Cancel out 0.5 on both sides.
\frac{1}{1000}=350\times 3.83\times 10^{-7}\times 25\left(3-y-0.7\right)^{2}
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\frac{1}{1000}=1340.5\times 10^{-7}\times 25\left(3-y-0.7\right)^{2}
Multiply 350 and 3.83 to get 1340.5.
\frac{1}{1000}=1340.5\times \frac{1}{10000000}\times 25\left(3-y-0.7\right)^{2}
Calculate 10 to the power of -7 and get \frac{1}{10000000}.
\frac{1}{1000}=\frac{2681}{20000000}\times 25\left(3-y-0.7\right)^{2}
Multiply 1340.5 and \frac{1}{10000000} to get \frac{2681}{20000000}.
\frac{1}{1000}=\frac{2681}{800000}\left(3-y-0.7\right)^{2}
Multiply \frac{2681}{20000000} and 25 to get \frac{2681}{800000}.
\frac{1}{1000}=\frac{2681}{800000}\left(2.3-y\right)^{2}
Subtract 0.7 from 3 to get 2.3.
\frac{1}{1000}=\frac{2681}{800000}\left(5.29-4.6y+y^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2.3-y\right)^{2}.
\frac{1}{1000}=\frac{1418249}{80000000}-\frac{61663}{4000000}y+\frac{2681}{800000}y^{2}
Use the distributive property to multiply \frac{2681}{800000} by 5.29-4.6y+y^{2}.
\frac{1418249}{80000000}-\frac{61663}{4000000}y+\frac{2681}{800000}y^{2}=\frac{1}{1000}
Swap sides so that all variable terms are on the left hand side.
\frac{1418249}{80000000}-\frac{61663}{4000000}y+\frac{2681}{800000}y^{2}-\frac{1}{1000}=0
Subtract \frac{1}{1000} from both sides.
\frac{1338249}{80000000}-\frac{61663}{4000000}y+\frac{2681}{800000}y^{2}=0
Subtract \frac{1}{1000} from \frac{1418249}{80000000} to get \frac{1338249}{80000000}.
\frac{2681}{800000}y^{2}-\frac{61663}{4000000}y+\frac{1338249}{80000000}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-\frac{61663}{4000000}\right)±\sqrt{\left(-\frac{61663}{4000000}\right)^{2}-4\times \frac{2681}{800000}\times \frac{1338249}{80000000}}}{2\times \frac{2681}{800000}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{2681}{800000} for a, -\frac{61663}{4000000} for b, and \frac{1338249}{80000000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-\frac{61663}{4000000}\right)±\sqrt{\frac{3802325569}{16000000000000}-4\times \frac{2681}{800000}\times \frac{1338249}{80000000}}}{2\times \frac{2681}{800000}}
Square -\frac{61663}{4000000} by squaring both the numerator and the denominator of the fraction.
y=\frac{-\left(-\frac{61663}{4000000}\right)±\sqrt{\frac{3802325569}{16000000000000}-\frac{2681}{200000}\times \frac{1338249}{80000000}}}{2\times \frac{2681}{800000}}
Multiply -4 times \frac{2681}{800000}.
y=\frac{-\left(-\frac{61663}{4000000}\right)±\sqrt{\frac{3802325569-3587845569}{16000000000000}}}{2\times \frac{2681}{800000}}
Multiply -\frac{2681}{200000} times \frac{1338249}{80000000} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{-\left(-\frac{61663}{4000000}\right)±\sqrt{\frac{2681}{200000000}}}{2\times \frac{2681}{800000}}
Add \frac{3802325569}{16000000000000} to -\frac{3587845569}{16000000000000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{-\left(-\frac{61663}{4000000}\right)±\frac{\sqrt{5362}}{20000}}{2\times \frac{2681}{800000}}
Take the square root of \frac{2681}{200000000}.
y=\frac{\frac{61663}{4000000}±\frac{\sqrt{5362}}{20000}}{2\times \frac{2681}{800000}}
The opposite of -\frac{61663}{4000000} is \frac{61663}{4000000}.
y=\frac{\frac{61663}{4000000}±\frac{\sqrt{5362}}{20000}}{\frac{2681}{400000}}
Multiply 2 times \frac{2681}{800000}.
y=\frac{\frac{\sqrt{5362}}{20000}+\frac{61663}{4000000}}{\frac{2681}{400000}}
Now solve the equation y=\frac{\frac{61663}{4000000}±\frac{\sqrt{5362}}{20000}}{\frac{2681}{400000}} when ± is plus. Add \frac{61663}{4000000} to \frac{\sqrt{5362}}{20000}.
y=\frac{20\sqrt{5362}}{2681}+\frac{23}{10}
Divide \frac{61663}{4000000}+\frac{\sqrt{5362}}{20000} by \frac{2681}{400000} by multiplying \frac{61663}{4000000}+\frac{\sqrt{5362}}{20000} by the reciprocal of \frac{2681}{400000}.
y=\frac{-\frac{\sqrt{5362}}{20000}+\frac{61663}{4000000}}{\frac{2681}{400000}}
Now solve the equation y=\frac{\frac{61663}{4000000}±\frac{\sqrt{5362}}{20000}}{\frac{2681}{400000}} when ± is minus. Subtract \frac{\sqrt{5362}}{20000} from \frac{61663}{4000000}.
y=-\frac{20\sqrt{5362}}{2681}+\frac{23}{10}
Divide \frac{61663}{4000000}-\frac{\sqrt{5362}}{20000} by \frac{2681}{400000} by multiplying \frac{61663}{4000000}-\frac{\sqrt{5362}}{20000} by the reciprocal of \frac{2681}{400000}.
y=\frac{20\sqrt{5362}}{2681}+\frac{23}{10} y=-\frac{20\sqrt{5362}}{2681}+\frac{23}{10}
The equation is now solved.
10^{-3}=350\times 3.83\times 10^{-7}\times 25\left(3-y-0.7\right)^{2}
Cancel out 0.5 on both sides.
\frac{1}{1000}=350\times 3.83\times 10^{-7}\times 25\left(3-y-0.7\right)^{2}
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\frac{1}{1000}=1340.5\times 10^{-7}\times 25\left(3-y-0.7\right)^{2}
Multiply 350 and 3.83 to get 1340.5.
\frac{1}{1000}=1340.5\times \frac{1}{10000000}\times 25\left(3-y-0.7\right)^{2}
Calculate 10 to the power of -7 and get \frac{1}{10000000}.
\frac{1}{1000}=\frac{2681}{20000000}\times 25\left(3-y-0.7\right)^{2}
Multiply 1340.5 and \frac{1}{10000000} to get \frac{2681}{20000000}.
\frac{1}{1000}=\frac{2681}{800000}\left(3-y-0.7\right)^{2}
Multiply \frac{2681}{20000000} and 25 to get \frac{2681}{800000}.
\frac{1}{1000}=\frac{2681}{800000}\left(2.3-y\right)^{2}
Subtract 0.7 from 3 to get 2.3.
\frac{1}{1000}=\frac{2681}{800000}\left(5.29-4.6y+y^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2.3-y\right)^{2}.
\frac{1}{1000}=\frac{1418249}{80000000}-\frac{61663}{4000000}y+\frac{2681}{800000}y^{2}
Use the distributive property to multiply \frac{2681}{800000} by 5.29-4.6y+y^{2}.
\frac{1418249}{80000000}-\frac{61663}{4000000}y+\frac{2681}{800000}y^{2}=\frac{1}{1000}
Swap sides so that all variable terms are on the left hand side.
-\frac{61663}{4000000}y+\frac{2681}{800000}y^{2}=\frac{1}{1000}-\frac{1418249}{80000000}
Subtract \frac{1418249}{80000000} from both sides.
-\frac{61663}{4000000}y+\frac{2681}{800000}y^{2}=-\frac{1338249}{80000000}
Subtract \frac{1418249}{80000000} from \frac{1}{1000} to get -\frac{1338249}{80000000}.
\frac{2681}{800000}y^{2}-\frac{61663}{4000000}y=-\frac{1338249}{80000000}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{2681}{800000}y^{2}-\frac{61663}{4000000}y}{\frac{2681}{800000}}=-\frac{\frac{1338249}{80000000}}{\frac{2681}{800000}}
Divide both sides of the equation by \frac{2681}{800000}, which is the same as multiplying both sides by the reciprocal of the fraction.
y^{2}+\left(-\frac{\frac{61663}{4000000}}{\frac{2681}{800000}}\right)y=-\frac{\frac{1338249}{80000000}}{\frac{2681}{800000}}
Dividing by \frac{2681}{800000} undoes the multiplication by \frac{2681}{800000}.
y^{2}-\frac{23}{5}y=-\frac{\frac{1338249}{80000000}}{\frac{2681}{800000}}
Divide -\frac{61663}{4000000} by \frac{2681}{800000} by multiplying -\frac{61663}{4000000} by the reciprocal of \frac{2681}{800000}.
y^{2}-\frac{23}{5}y=-\frac{1338249}{268100}
Divide -\frac{1338249}{80000000} by \frac{2681}{800000} by multiplying -\frac{1338249}{80000000} by the reciprocal of \frac{2681}{800000}.
y^{2}-\frac{23}{5}y+\left(-\frac{23}{10}\right)^{2}=-\frac{1338249}{268100}+\left(-\frac{23}{10}\right)^{2}
Divide -\frac{23}{5}, the coefficient of the x term, by 2 to get -\frac{23}{10}. Then add the square of -\frac{23}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{23}{5}y+\frac{529}{100}=-\frac{1338249}{268100}+\frac{529}{100}
Square -\frac{23}{10} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{23}{5}y+\frac{529}{100}=\frac{800}{2681}
Add -\frac{1338249}{268100} to \frac{529}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{23}{10}\right)^{2}=\frac{800}{2681}
Factor y^{2}-\frac{23}{5}y+\frac{529}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{23}{10}\right)^{2}}=\sqrt{\frac{800}{2681}}
Take the square root of both sides of the equation.
y-\frac{23}{10}=\frac{20\sqrt{5362}}{2681} y-\frac{23}{10}=-\frac{20\sqrt{5362}}{2681}
Simplify.
y=\frac{20\sqrt{5362}}{2681}+\frac{23}{10} y=-\frac{20\sqrt{5362}}{2681}+\frac{23}{10}
Add \frac{23}{10} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}