Solve for x
x=\frac{10\sqrt{771365}-8750}{123}\approx 0.266168722
x=\frac{-10\sqrt{771365}-8750}{123}\approx -142.542591486
Graph
Share
Copied to clipboard
0.369x^{2}+52.5x=14
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
0.369x^{2}+52.5x-14=14-14
Subtract 14 from both sides of the equation.
0.369x^{2}+52.5x-14=0
Subtracting 14 from itself leaves 0.
x=\frac{-52.5±\sqrt{52.5^{2}-4\times 0.369\left(-14\right)}}{2\times 0.369}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.369 for a, 52.5 for b, and -14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-52.5±\sqrt{2756.25-4\times 0.369\left(-14\right)}}{2\times 0.369}
Square 52.5 by squaring both the numerator and the denominator of the fraction.
x=\frac{-52.5±\sqrt{2756.25-1.476\left(-14\right)}}{2\times 0.369}
Multiply -4 times 0.369.
x=\frac{-52.5±\sqrt{2756.25+20.664}}{2\times 0.369}
Multiply -1.476 times -14.
x=\frac{-52.5±\sqrt{2776.914}}{2\times 0.369}
Add 2756.25 to 20.664 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-52.5±\frac{3\sqrt{771365}}{50}}{2\times 0.369}
Take the square root of 2776.914.
x=\frac{-52.5±\frac{3\sqrt{771365}}{50}}{0.738}
Multiply 2 times 0.369.
x=\frac{\frac{3\sqrt{771365}}{50}-\frac{105}{2}}{0.738}
Now solve the equation x=\frac{-52.5±\frac{3\sqrt{771365}}{50}}{0.738} when ± is plus. Add -52.5 to \frac{3\sqrt{771365}}{50}.
x=\frac{10\sqrt{771365}-8750}{123}
Divide -\frac{105}{2}+\frac{3\sqrt{771365}}{50} by 0.738 by multiplying -\frac{105}{2}+\frac{3\sqrt{771365}}{50} by the reciprocal of 0.738.
x=\frac{-\frac{3\sqrt{771365}}{50}-\frac{105}{2}}{0.738}
Now solve the equation x=\frac{-52.5±\frac{3\sqrt{771365}}{50}}{0.738} when ± is minus. Subtract \frac{3\sqrt{771365}}{50} from -52.5.
x=\frac{-10\sqrt{771365}-8750}{123}
Divide -\frac{105}{2}-\frac{3\sqrt{771365}}{50} by 0.738 by multiplying -\frac{105}{2}-\frac{3\sqrt{771365}}{50} by the reciprocal of 0.738.
x=\frac{10\sqrt{771365}-8750}{123} x=\frac{-10\sqrt{771365}-8750}{123}
The equation is now solved.
0.369x^{2}+52.5x=14
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{0.369x^{2}+52.5x}{0.369}=\frac{14}{0.369}
Divide both sides of the equation by 0.369, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{52.5}{0.369}x=\frac{14}{0.369}
Dividing by 0.369 undoes the multiplication by 0.369.
x^{2}+\frac{17500}{123}x=\frac{14}{0.369}
Divide 52.5 by 0.369 by multiplying 52.5 by the reciprocal of 0.369.
x^{2}+\frac{17500}{123}x=\frac{14000}{369}
Divide 14 by 0.369 by multiplying 14 by the reciprocal of 0.369.
x^{2}+\frac{17500}{123}x+\frac{8750}{123}^{2}=\frac{14000}{369}+\frac{8750}{123}^{2}
Divide \frac{17500}{123}, the coefficient of the x term, by 2 to get \frac{8750}{123}. Then add the square of \frac{8750}{123} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{17500}{123}x+\frac{76562500}{15129}=\frac{14000}{369}+\frac{76562500}{15129}
Square \frac{8750}{123} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{17500}{123}x+\frac{76562500}{15129}=\frac{77136500}{15129}
Add \frac{14000}{369} to \frac{76562500}{15129} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{8750}{123}\right)^{2}=\frac{77136500}{15129}
Factor x^{2}+\frac{17500}{123}x+\frac{76562500}{15129}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{8750}{123}\right)^{2}}=\sqrt{\frac{77136500}{15129}}
Take the square root of both sides of the equation.
x+\frac{8750}{123}=\frac{10\sqrt{771365}}{123} x+\frac{8750}{123}=-\frac{10\sqrt{771365}}{123}
Simplify.
x=\frac{10\sqrt{771365}-8750}{123} x=\frac{-10\sqrt{771365}-8750}{123}
Subtract \frac{8750}{123} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}