Solve for x
x = \frac{\sqrt{97}}{5} \approx 1.96977156
x = -\frac{\sqrt{97}}{5} \approx -1.96977156
Graph
Share
Copied to clipboard
0.28=\frac{1+2^{2}-x^{2}}{2\times 1\times 2}
Calculate 1 to the power of 2 and get 1.
0.28=\frac{1+4-x^{2}}{2\times 1\times 2}
Calculate 2 to the power of 2 and get 4.
0.28=\frac{5-x^{2}}{2\times 1\times 2}
Add 1 and 4 to get 5.
0.28=\frac{5-x^{2}}{2\times 2}
Multiply 2 and 1 to get 2.
0.28=\frac{5-x^{2}}{4}
Multiply 2 and 2 to get 4.
0.28=\frac{5}{4}-\frac{1}{4}x^{2}
Divide each term of 5-x^{2} by 4 to get \frac{5}{4}-\frac{1}{4}x^{2}.
\frac{5}{4}-\frac{1}{4}x^{2}=0.28
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{4}x^{2}=0.28-\frac{5}{4}
Subtract \frac{5}{4} from both sides.
-\frac{1}{4}x^{2}=-\frac{97}{100}
Subtract \frac{5}{4} from 0.28 to get -\frac{97}{100}.
x^{2}=-\frac{97}{100}\left(-4\right)
Multiply both sides by -4, the reciprocal of -\frac{1}{4}.
x^{2}=\frac{97}{25}
Multiply -\frac{97}{100} and -4 to get \frac{97}{25}.
x=\frac{\sqrt{97}}{5} x=-\frac{\sqrt{97}}{5}
Take the square root of both sides of the equation.
0.28=\frac{1+2^{2}-x^{2}}{2\times 1\times 2}
Calculate 1 to the power of 2 and get 1.
0.28=\frac{1+4-x^{2}}{2\times 1\times 2}
Calculate 2 to the power of 2 and get 4.
0.28=\frac{5-x^{2}}{2\times 1\times 2}
Add 1 and 4 to get 5.
0.28=\frac{5-x^{2}}{2\times 2}
Multiply 2 and 1 to get 2.
0.28=\frac{5-x^{2}}{4}
Multiply 2 and 2 to get 4.
0.28=\frac{5}{4}-\frac{1}{4}x^{2}
Divide each term of 5-x^{2} by 4 to get \frac{5}{4}-\frac{1}{4}x^{2}.
\frac{5}{4}-\frac{1}{4}x^{2}=0.28
Swap sides so that all variable terms are on the left hand side.
\frac{5}{4}-\frac{1}{4}x^{2}-0.28=0
Subtract 0.28 from both sides.
\frac{97}{100}-\frac{1}{4}x^{2}=0
Subtract 0.28 from \frac{5}{4} to get \frac{97}{100}.
-\frac{1}{4}x^{2}+\frac{97}{100}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{1}{4}\right)\times \frac{97}{100}}}{2\left(-\frac{1}{4}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{4} for a, 0 for b, and \frac{97}{100} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{1}{4}\right)\times \frac{97}{100}}}{2\left(-\frac{1}{4}\right)}
Square 0.
x=\frac{0±\sqrt{\frac{97}{100}}}{2\left(-\frac{1}{4}\right)}
Multiply -4 times -\frac{1}{4}.
x=\frac{0±\frac{\sqrt{97}}{10}}{2\left(-\frac{1}{4}\right)}
Take the square root of \frac{97}{100}.
x=\frac{0±\frac{\sqrt{97}}{10}}{-\frac{1}{2}}
Multiply 2 times -\frac{1}{4}.
x=-\frac{\sqrt{97}}{5}
Now solve the equation x=\frac{0±\frac{\sqrt{97}}{10}}{-\frac{1}{2}} when ± is plus.
x=\frac{\sqrt{97}}{5}
Now solve the equation x=\frac{0±\frac{\sqrt{97}}{10}}{-\frac{1}{2}} when ± is minus.
x=-\frac{\sqrt{97}}{5} x=\frac{\sqrt{97}}{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}