Solve for x
x=2\sqrt{17}+10\approx 18.246211251
x=10-2\sqrt{17}\approx 1.753788749
Graph
Share
Copied to clipboard
0.25x^{2}-5x+8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 0.25\times 8}}{2\times 0.25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.25 for a, -5 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 0.25\times 8}}{2\times 0.25}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-8}}{2\times 0.25}
Multiply -4 times 0.25.
x=\frac{-\left(-5\right)±\sqrt{17}}{2\times 0.25}
Add 25 to -8.
x=\frac{5±\sqrt{17}}{2\times 0.25}
The opposite of -5 is 5.
x=\frac{5±\sqrt{17}}{0.5}
Multiply 2 times 0.25.
x=\frac{\sqrt{17}+5}{0.5}
Now solve the equation x=\frac{5±\sqrt{17}}{0.5} when ± is plus. Add 5 to \sqrt{17}.
x=2\sqrt{17}+10
Divide 5+\sqrt{17} by 0.5 by multiplying 5+\sqrt{17} by the reciprocal of 0.5.
x=\frac{5-\sqrt{17}}{0.5}
Now solve the equation x=\frac{5±\sqrt{17}}{0.5} when ± is minus. Subtract \sqrt{17} from 5.
x=10-2\sqrt{17}
Divide 5-\sqrt{17} by 0.5 by multiplying 5-\sqrt{17} by the reciprocal of 0.5.
x=2\sqrt{17}+10 x=10-2\sqrt{17}
The equation is now solved.
0.25x^{2}-5x+8=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
0.25x^{2}-5x+8-8=-8
Subtract 8 from both sides of the equation.
0.25x^{2}-5x=-8
Subtracting 8 from itself leaves 0.
\frac{0.25x^{2}-5x}{0.25}=-\frac{8}{0.25}
Multiply both sides by 4.
x^{2}+\left(-\frac{5}{0.25}\right)x=-\frac{8}{0.25}
Dividing by 0.25 undoes the multiplication by 0.25.
x^{2}-20x=-\frac{8}{0.25}
Divide -5 by 0.25 by multiplying -5 by the reciprocal of 0.25.
x^{2}-20x=-32
Divide -8 by 0.25 by multiplying -8 by the reciprocal of 0.25.
x^{2}-20x+\left(-10\right)^{2}=-32+\left(-10\right)^{2}
Divide -20, the coefficient of the x term, by 2 to get -10. Then add the square of -10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-20x+100=-32+100
Square -10.
x^{2}-20x+100=68
Add -32 to 100.
\left(x-10\right)^{2}=68
Factor x^{2}-20x+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-10\right)^{2}}=\sqrt{68}
Take the square root of both sides of the equation.
x-10=2\sqrt{17} x-10=-2\sqrt{17}
Simplify.
x=2\sqrt{17}+10 x=10-2\sqrt{17}
Add 10 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}