Solve for s
s = \frac{5 \sqrt{3001} + 255}{2} \approx 264.453459248
s=\frac{255-5\sqrt{3001}}{2}\approx -9.453459248
Share
Copied to clipboard
0.2\left(1-\frac{s}{500}\right)\times 500\left(s-10\right)=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Variable s cannot be equal to 10 since division by zero is not defined. Multiply both sides of the equation by 500\left(s-10\right), the least common multiple of 500,100s-1000.
100\left(1-\frac{s}{500}\right)\left(s-10\right)=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Multiply 0.2 and 500 to get 100.
\left(100+100\left(-\frac{s}{500}\right)\right)\left(s-10\right)=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Use the distributive property to multiply 100 by 1-\frac{s}{500}.
\left(100+\frac{s}{-5}\right)\left(s-10\right)=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Cancel out 500, the greatest common factor in 100 and 500.
100s-1000+\frac{s}{-5}s-10\times \frac{s}{-5}=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Use the distributive property to multiply 100+\frac{s}{-5} by s-10.
100s-1000+\frac{ss}{-5}-10\times \frac{s}{-5}=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Express \frac{s}{-5}s as a single fraction.
100s-1000+\frac{ss}{-5}-2s=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Cancel out -5, the greatest common factor in 10 and -5.
98s-1000+\frac{ss}{-5}=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Combine 100s and -2s to get 98s.
98s-1000+\frac{s^{2}}{-5}=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Multiply s and s to get s^{2}.
98s-1000+\frac{s^{2}}{-5}=50\left(s-10\right)-5\times 200\left(1-\frac{s}{1000}\right)
Multiply 500 and 0.1 to get 50.
98s-1000+\frac{s^{2}}{-5}=50s-500-5\times 200\left(1-\frac{s}{1000}\right)
Use the distributive property to multiply 50 by s-10.
98s-1000+\frac{s^{2}}{-5}=50s-500-1000\left(1-\frac{s}{1000}\right)
Multiply -5 and 200 to get -1000.
98s-1000+\frac{s^{2}}{-5}=50s-500-1000-1000\left(-\frac{s}{1000}\right)
Use the distributive property to multiply -1000 by 1-\frac{s}{1000}.
98s-1000+\frac{s^{2}}{-5}=50s-500-1000+1000\times \frac{s}{1000}
Multiply -1000 and -1 to get 1000.
98s-1000+\frac{s^{2}}{-5}=50s-500-1000+\frac{1000s}{1000}
Express 1000\times \frac{s}{1000} as a single fraction.
98s-1000+\frac{s^{2}}{-5}=50s-500-1000+s
Cancel out 1000 and 1000.
98s-1000+\frac{s^{2}}{-5}=50s-1500+s
Subtract 1000 from -500 to get -1500.
98s-1000+\frac{s^{2}}{-5}=51s-1500
Combine 50s and s to get 51s.
98s-1000+\frac{s^{2}}{-5}-51s=-1500
Subtract 51s from both sides.
47s-1000+\frac{s^{2}}{-5}=-1500
Combine 98s and -51s to get 47s.
47s-1000+\frac{s^{2}}{-5}+1500=0
Add 1500 to both sides.
47s+500+\frac{s^{2}}{-5}=0
Add -1000 and 1500 to get 500.
-235s-2500+s^{2}=0
Multiply both sides of the equation by -5.
s^{2}-235s-2500=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
s=\frac{-\left(-235\right)±\sqrt{\left(-235\right)^{2}-4\left(-2500\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -235 for b, and -2500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s=\frac{-\left(-235\right)±\sqrt{55225-4\left(-2500\right)}}{2}
Square -235.
s=\frac{-\left(-235\right)±\sqrt{55225+10000}}{2}
Multiply -4 times -2500.
s=\frac{-\left(-235\right)±\sqrt{65225}}{2}
Add 55225 to 10000.
s=\frac{-\left(-235\right)±5\sqrt{2609}}{2}
Take the square root of 65225.
s=\frac{235±5\sqrt{2609}}{2}
The opposite of -235 is 235.
s=\frac{5\sqrt{2609}+235}{2}
Now solve the equation s=\frac{235±5\sqrt{2609}}{2} when ± is plus. Add 235 to 5\sqrt{2609}.
s=\frac{235-5\sqrt{2609}}{2}
Now solve the equation s=\frac{235±5\sqrt{2609}}{2} when ± is minus. Subtract 5\sqrt{2609} from 235.
s=\frac{5\sqrt{2609}+235}{2} s=\frac{235-5\sqrt{2609}}{2}
The equation is now solved.
0.2\left(1-\frac{s}{500}\right)\times 500\left(s-10\right)=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Variable s cannot be equal to 10 since division by zero is not defined. Multiply both sides of the equation by 500\left(s-10\right), the least common multiple of 500,100s-1000.
100\left(1-\frac{s}{500}\right)\left(s-10\right)=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Multiply 0.2 and 500 to get 100.
\left(100+100\left(-\frac{s}{500}\right)\right)\left(s-10\right)=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Use the distributive property to multiply 100 by 1-\frac{s}{500}.
\left(100+\frac{s}{-5}\right)\left(s-10\right)=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Cancel out 500, the greatest common factor in 100 and 500.
100s-1000+\frac{s}{-5}s-10\times \frac{s}{-5}=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Use the distributive property to multiply 100+\frac{s}{-5} by s-10.
100s-1000+\frac{ss}{-5}-10\times \frac{s}{-5}=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Express \frac{s}{-5}s as a single fraction.
100s-1000+\frac{ss}{-5}-2s=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Cancel out -5, the greatest common factor in 10 and -5.
98s-1000+\frac{ss}{-5}=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Combine 100s and -2s to get 98s.
98s-1000+\frac{s^{2}}{-5}=500\left(s-10\right)\times 0.1-5\times 200\left(1-\frac{s}{1000}\right)
Multiply s and s to get s^{2}.
98s-1000+\frac{s^{2}}{-5}=50\left(s-10\right)-5\times 200\left(1-\frac{s}{1000}\right)
Multiply 500 and 0.1 to get 50.
98s-1000+\frac{s^{2}}{-5}=50s-500-5\times 200\left(1-\frac{s}{1000}\right)
Use the distributive property to multiply 50 by s-10.
98s-1000+\frac{s^{2}}{-5}=50s-500-1000\left(1-\frac{s}{1000}\right)
Multiply -5 and 200 to get -1000.
98s-1000+\frac{s^{2}}{-5}=50s-500-1000-1000\left(-\frac{s}{1000}\right)
Use the distributive property to multiply -1000 by 1-\frac{s}{1000}.
98s-1000+\frac{s^{2}}{-5}=50s-500-1000+1000\times \frac{s}{1000}
Multiply -1000 and -1 to get 1000.
98s-1000+\frac{s^{2}}{-5}=50s-500-1000+\frac{1000s}{1000}
Express 1000\times \frac{s}{1000} as a single fraction.
98s-1000+\frac{s^{2}}{-5}=50s-500-1000+s
Cancel out 1000 and 1000.
98s-1000+\frac{s^{2}}{-5}=50s-1500+s
Subtract 1000 from -500 to get -1500.
98s-1000+\frac{s^{2}}{-5}=51s-1500
Combine 50s and s to get 51s.
98s-1000+\frac{s^{2}}{-5}-51s=-1500
Subtract 51s from both sides.
47s-1000+\frac{s^{2}}{-5}=-1500
Combine 98s and -51s to get 47s.
47s+\frac{s^{2}}{-5}=-1500+1000
Add 1000 to both sides.
47s+\frac{s^{2}}{-5}=-500
Add -1500 and 1000 to get -500.
-235s+s^{2}=2500
Multiply both sides of the equation by -5.
s^{2}-235s=2500
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
s^{2}-235s+\left(-\frac{235}{2}\right)^{2}=2500+\left(-\frac{235}{2}\right)^{2}
Divide -235, the coefficient of the x term, by 2 to get -\frac{235}{2}. Then add the square of -\frac{235}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
s^{2}-235s+\frac{55225}{4}=2500+\frac{55225}{4}
Square -\frac{235}{2} by squaring both the numerator and the denominator of the fraction.
s^{2}-235s+\frac{55225}{4}=\frac{65225}{4}
Add 2500 to \frac{55225}{4}.
\left(s-\frac{235}{2}\right)^{2}=\frac{65225}{4}
Factor s^{2}-235s+\frac{55225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(s-\frac{235}{2}\right)^{2}}=\sqrt{\frac{65225}{4}}
Take the square root of both sides of the equation.
s-\frac{235}{2}=\frac{5\sqrt{2609}}{2} s-\frac{235}{2}=-\frac{5\sqrt{2609}}{2}
Simplify.
s=\frac{5\sqrt{2609}+235}{2} s=\frac{235-5\sqrt{2609}}{2}
Add \frac{235}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}