Solve for x
x=400
x = -\frac{2200}{3} = -733\frac{1}{3} \approx -733.333333333
Graph
Share
Copied to clipboard
0.0003x^{2}+0.1x=88
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
0.0003x^{2}+0.1x-88=88-88
Subtract 88 from both sides of the equation.
0.0003x^{2}+0.1x-88=0
Subtracting 88 from itself leaves 0.
x=\frac{-0.1±\sqrt{0.1^{2}-4\times 0.0003\left(-88\right)}}{2\times 0.0003}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.0003 for a, 0.1 for b, and -88 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-0.1±\sqrt{0.01-4\times 0.0003\left(-88\right)}}{2\times 0.0003}
Square 0.1 by squaring both the numerator and the denominator of the fraction.
x=\frac{-0.1±\sqrt{0.01-0.0012\left(-88\right)}}{2\times 0.0003}
Multiply -4 times 0.0003.
x=\frac{-0.1±\sqrt{0.01+0.1056}}{2\times 0.0003}
Multiply -0.0012 times -88.
x=\frac{-0.1±\sqrt{0.1156}}{2\times 0.0003}
Add 0.01 to 0.1056 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-0.1±\frac{17}{50}}{2\times 0.0003}
Take the square root of 0.1156.
x=\frac{-0.1±\frac{17}{50}}{0.0006}
Multiply 2 times 0.0003.
x=\frac{\frac{6}{25}}{0.0006}
Now solve the equation x=\frac{-0.1±\frac{17}{50}}{0.0006} when ± is plus. Add -0.1 to \frac{17}{50} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=400
Divide \frac{6}{25} by 0.0006 by multiplying \frac{6}{25} by the reciprocal of 0.0006.
x=-\frac{\frac{11}{25}}{0.0006}
Now solve the equation x=\frac{-0.1±\frac{17}{50}}{0.0006} when ± is minus. Subtract \frac{17}{50} from -0.1 by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{2200}{3}
Divide -\frac{11}{25} by 0.0006 by multiplying -\frac{11}{25} by the reciprocal of 0.0006.
x=400 x=-\frac{2200}{3}
The equation is now solved.
0.0003x^{2}+0.1x=88
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{0.0003x^{2}+0.1x}{0.0003}=\frac{88}{0.0003}
Divide both sides of the equation by 0.0003, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{0.1}{0.0003}x=\frac{88}{0.0003}
Dividing by 0.0003 undoes the multiplication by 0.0003.
x^{2}+\frac{1000}{3}x=\frac{88}{0.0003}
Divide 0.1 by 0.0003 by multiplying 0.1 by the reciprocal of 0.0003.
x^{2}+\frac{1000}{3}x=\frac{880000}{3}
Divide 88 by 0.0003 by multiplying 88 by the reciprocal of 0.0003.
x^{2}+\frac{1000}{3}x+\frac{500}{3}^{2}=\frac{880000}{3}+\frac{500}{3}^{2}
Divide \frac{1000}{3}, the coefficient of the x term, by 2 to get \frac{500}{3}. Then add the square of \frac{500}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1000}{3}x+\frac{250000}{9}=\frac{880000}{3}+\frac{250000}{9}
Square \frac{500}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1000}{3}x+\frac{250000}{9}=\frac{2890000}{9}
Add \frac{880000}{3} to \frac{250000}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{500}{3}\right)^{2}=\frac{2890000}{9}
Factor x^{2}+\frac{1000}{3}x+\frac{250000}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{500}{3}\right)^{2}}=\sqrt{\frac{2890000}{9}}
Take the square root of both sides of the equation.
x+\frac{500}{3}=\frac{1700}{3} x+\frac{500}{3}=-\frac{1700}{3}
Simplify.
x=400 x=-\frac{2200}{3}
Subtract \frac{500}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}