Solve for x
x = \frac{\sqrt{181} + 3}{2} \approx 8.226812024
x=\frac{3-\sqrt{181}}{2}\approx -5.226812024
Graph
Share
Copied to clipboard
0.1x+0.05x^{2}-0.25x=2.15
Use the distributive property to multiply 0.05x by x-5.
-0.15x+0.05x^{2}=2.15
Combine 0.1x and -0.25x to get -0.15x.
-0.15x+0.05x^{2}-2.15=0
Subtract 2.15 from both sides.
0.05x^{2}-0.15x-2.15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-0.15\right)±\sqrt{\left(-0.15\right)^{2}-4\times 0.05\left(-2.15\right)}}{2\times 0.05}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.05 for a, -0.15 for b, and -2.15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-0.15\right)±\sqrt{0.0225-4\times 0.05\left(-2.15\right)}}{2\times 0.05}
Square -0.15 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-0.15\right)±\sqrt{0.0225-0.2\left(-2.15\right)}}{2\times 0.05}
Multiply -4 times 0.05.
x=\frac{-\left(-0.15\right)±\sqrt{0.0225+0.43}}{2\times 0.05}
Multiply -0.2 times -2.15 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-0.15\right)±\sqrt{0.4525}}{2\times 0.05}
Add 0.0225 to 0.43 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-0.15\right)±\frac{\sqrt{181}}{20}}{2\times 0.05}
Take the square root of 0.4525.
x=\frac{0.15±\frac{\sqrt{181}}{20}}{2\times 0.05}
The opposite of -0.15 is 0.15.
x=\frac{0.15±\frac{\sqrt{181}}{20}}{0.1}
Multiply 2 times 0.05.
x=\frac{\sqrt{181}+3}{0.1\times 20}
Now solve the equation x=\frac{0.15±\frac{\sqrt{181}}{20}}{0.1} when ± is plus. Add 0.15 to \frac{\sqrt{181}}{20}.
x=\frac{\sqrt{181}+3}{2}
Divide \frac{3+\sqrt{181}}{20} by 0.1 by multiplying \frac{3+\sqrt{181}}{20} by the reciprocal of 0.1.
x=\frac{3-\sqrt{181}}{0.1\times 20}
Now solve the equation x=\frac{0.15±\frac{\sqrt{181}}{20}}{0.1} when ± is minus. Subtract \frac{\sqrt{181}}{20} from 0.15.
x=\frac{3-\sqrt{181}}{2}
Divide \frac{3-\sqrt{181}}{20} by 0.1 by multiplying \frac{3-\sqrt{181}}{20} by the reciprocal of 0.1.
x=\frac{\sqrt{181}+3}{2} x=\frac{3-\sqrt{181}}{2}
The equation is now solved.
0.1x+0.05x^{2}-0.25x=2.15
Use the distributive property to multiply 0.05x by x-5.
-0.15x+0.05x^{2}=2.15
Combine 0.1x and -0.25x to get -0.15x.
0.05x^{2}-0.15x=2.15
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{0.05x^{2}-0.15x}{0.05}=\frac{2.15}{0.05}
Multiply both sides by 20.
x^{2}+\left(-\frac{0.15}{0.05}\right)x=\frac{2.15}{0.05}
Dividing by 0.05 undoes the multiplication by 0.05.
x^{2}-3x=\frac{2.15}{0.05}
Divide -0.15 by 0.05 by multiplying -0.15 by the reciprocal of 0.05.
x^{2}-3x=43
Divide 2.15 by 0.05 by multiplying 2.15 by the reciprocal of 0.05.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=43+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=43+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{181}{4}
Add 43 to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{181}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{181}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{181}}{2} x-\frac{3}{2}=-\frac{\sqrt{181}}{2}
Simplify.
x=\frac{\sqrt{181}+3}{2} x=\frac{3-\sqrt{181}}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}