Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

0.1=3y\left(\frac{9}{11}-\frac{x}{\sqrt{10^{7}}}\right)-1
Expand \frac{0.9}{1.1} by multiplying both numerator and the denominator by 10.
0.1=3y\left(\frac{9}{11}-\frac{x}{\sqrt{10000000}}\right)-1
Calculate 10 to the power of 7 and get 10000000.
0.1=3y\left(\frac{9}{11}-\frac{x}{1000\sqrt{10}}\right)-1
Factor 10000000=1000^{2}\times 10. Rewrite the square root of the product \sqrt{1000^{2}\times 10} as the product of square roots \sqrt{1000^{2}}\sqrt{10}. Take the square root of 1000^{2}.
0.1=3y\left(\frac{9}{11}-\frac{x\sqrt{10}}{1000\left(\sqrt{10}\right)^{2}}\right)-1
Rationalize the denominator of \frac{x}{1000\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
0.1=3y\left(\frac{9}{11}-\frac{x\sqrt{10}}{1000\times 10}\right)-1
The square of \sqrt{10} is 10.
0.1=3y\left(\frac{9}{11}-\frac{x\sqrt{10}}{10000}\right)-1
Multiply 1000 and 10 to get 10000.
0.1=3y\left(\frac{9\times 10000}{110000}-\frac{11x\sqrt{10}}{110000}\right)-1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 11 and 10000 is 110000. Multiply \frac{9}{11} times \frac{10000}{10000}. Multiply \frac{x\sqrt{10}}{10000} times \frac{11}{11}.
0.1=3y\times \frac{9\times 10000-11x\sqrt{10}}{110000}-1
Since \frac{9\times 10000}{110000} and \frac{11x\sqrt{10}}{110000} have the same denominator, subtract them by subtracting their numerators.
0.1=3y\times \frac{90000-11x\sqrt{10}}{110000}-1
Do the multiplications in 9\times 10000-11x\sqrt{10}.
0.1=\frac{3\left(90000-11x\sqrt{10}\right)}{110000}y-1
Express 3\times \frac{90000-11x\sqrt{10}}{110000} as a single fraction.
0.1=\frac{270000-33\sqrt{10}x}{110000}y-1
Use the distributive property to multiply 3 by 90000-11x\sqrt{10}.
0.1=\frac{\left(270000-33\sqrt{10}x\right)y}{110000}-1
Express \frac{270000-33\sqrt{10}x}{110000}y as a single fraction.
\frac{\left(270000-33\sqrt{10}x\right)y}{110000}-1=0.1
Swap sides so that all variable terms are on the left hand side.
\frac{270000y-33\sqrt{10}xy}{110000}-1=0.1
Use the distributive property to multiply 270000-33\sqrt{10}x by y.
\frac{270000y-33\sqrt{10}xy}{110000}=0.1+1
Add 1 to both sides.
\frac{270000y-33\sqrt{10}xy}{110000}=1.1
Add 0.1 and 1 to get 1.1.
270000y-33\sqrt{10}xy=1.1\times 110000
Multiply both sides by 110000.
270000y-33\sqrt{10}xy=121000
Multiply 1.1 and 110000 to get 121000.
-33\sqrt{10}xy=121000-270000y
Subtract 270000y from both sides.
\left(-33\sqrt{10}y\right)x=121000-270000y
The equation is in standard form.
\frac{\left(-33\sqrt{10}y\right)x}{-33\sqrt{10}y}=\frac{121000-270000y}{-33\sqrt{10}y}
Divide both sides by -33\sqrt{10}y.
x=\frac{121000-270000y}{-33\sqrt{10}y}
Dividing by -33\sqrt{10}y undoes the multiplication by -33\sqrt{10}y.
x=-\frac{100\sqrt{10}\left(121-270y\right)}{33y}
Divide 121000-270000y by -33\sqrt{10}y.
0.1=3y\left(\frac{9}{11}-\frac{x}{\sqrt{10^{7}}}\right)-1
Expand \frac{0.9}{1.1} by multiplying both numerator and the denominator by 10.
0.1=3y\left(\frac{9}{11}-\frac{x}{\sqrt{10000000}}\right)-1
Calculate 10 to the power of 7 and get 10000000.
0.1=3y\left(\frac{9}{11}-\frac{x}{1000\sqrt{10}}\right)-1
Factor 10000000=1000^{2}\times 10. Rewrite the square root of the product \sqrt{1000^{2}\times 10} as the product of square roots \sqrt{1000^{2}}\sqrt{10}. Take the square root of 1000^{2}.
0.1=3y\left(\frac{9}{11}-\frac{x\sqrt{10}}{1000\left(\sqrt{10}\right)^{2}}\right)-1
Rationalize the denominator of \frac{x}{1000\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
0.1=3y\left(\frac{9}{11}-\frac{x\sqrt{10}}{1000\times 10}\right)-1
The square of \sqrt{10} is 10.
0.1=3y\left(\frac{9}{11}-\frac{x\sqrt{10}}{10000}\right)-1
Multiply 1000 and 10 to get 10000.
0.1=3y\left(\frac{9\times 10000}{110000}-\frac{11x\sqrt{10}}{110000}\right)-1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 11 and 10000 is 110000. Multiply \frac{9}{11} times \frac{10000}{10000}. Multiply \frac{x\sqrt{10}}{10000} times \frac{11}{11}.
0.1=3y\times \frac{9\times 10000-11x\sqrt{10}}{110000}-1
Since \frac{9\times 10000}{110000} and \frac{11x\sqrt{10}}{110000} have the same denominator, subtract them by subtracting their numerators.
0.1=3y\times \frac{90000-11\sqrt{10}x}{110000}-1
Do the multiplications in 9\times 10000-11x\sqrt{10}.
0.1=\frac{3\left(90000-11\sqrt{10}x\right)}{110000}y-1
Express 3\times \frac{90000-11\sqrt{10}x}{110000} as a single fraction.
0.1=\frac{270000-33\sqrt{10}x}{110000}y-1
Use the distributive property to multiply 3 by 90000-11\sqrt{10}x.
0.1=\frac{\left(270000-33\sqrt{10}x\right)y}{110000}-1
Express \frac{270000-33\sqrt{10}x}{110000}y as a single fraction.
\frac{\left(270000-33\sqrt{10}x\right)y}{110000}-1=0.1
Swap sides so that all variable terms are on the left hand side.
\frac{270000y-33\sqrt{10}xy}{110000}-1=0.1
Use the distributive property to multiply 270000-33\sqrt{10}x by y.
\frac{270000y-33\sqrt{10}xy}{110000}=0.1+1
Add 1 to both sides.
\frac{270000y-33\sqrt{10}xy}{110000}=1.1
Add 0.1 and 1 to get 1.1.
270000y-33\sqrt{10}xy=1.1\times 110000
Multiply both sides by 110000.
270000y-33\sqrt{10}xy=121000
Multiply 1.1 and 110000 to get 121000.
\left(270000-33\sqrt{10}x\right)y=121000
Combine all terms containing y.
\left(-33\sqrt{10}x+270000\right)y=121000
The equation is in standard form.
\frac{\left(-33\sqrt{10}x+270000\right)y}{-33\sqrt{10}x+270000}=\frac{121000}{-33\sqrt{10}x+270000}
Divide both sides by 270000-33\sqrt{10}x.
y=\frac{121000}{-33\sqrt{10}x+270000}
Dividing by 270000-33\sqrt{10}x undoes the multiplication by 270000-33\sqrt{10}x.
y=\frac{121000}{3\left(-11\sqrt{10}x+90000\right)}
Divide 121000 by 270000-33\sqrt{10}x.