Solve for x
x=\frac{10\sqrt{249}\left(180y-121\right)}{11y}
y\neq 0
Solve for y
y=\frac{301290}{-11\sqrt{249}x+448200}
x\neq \frac{1800\sqrt{249}}{11}
Graph
Share
Copied to clipboard
0.1=2y\left(\frac{0.9}{1+0.1}-\frac{x}{\sqrt{9.96\times 10^{6}}}\right)-1
Subtract 0.1 from 1 to get 0.9.
0.1=2y\left(\frac{0.9}{1.1}-\frac{x}{\sqrt{9.96\times 10^{6}}}\right)-1
Add 1 and 0.1 to get 1.1.
0.1=2y\left(\frac{9}{11}-\frac{x}{\sqrt{9.96\times 10^{6}}}\right)-1
Expand \frac{0.9}{1.1} by multiplying both numerator and the denominator by 10.
0.1=2y\left(\frac{9}{11}-\frac{x}{\sqrt{9.96\times 1000000}}\right)-1
Calculate 10 to the power of 6 and get 1000000.
0.1=2y\left(\frac{9}{11}-\frac{x}{\sqrt{9960000}}\right)-1
Multiply 9.96 and 1000000 to get 9960000.
0.1=2y\left(\frac{9}{11}-\frac{x}{200\sqrt{249}}\right)-1
Factor 9960000=200^{2}\times 249. Rewrite the square root of the product \sqrt{200^{2}\times 249} as the product of square roots \sqrt{200^{2}}\sqrt{249}. Take the square root of 200^{2}.
0.1=2y\left(\frac{9}{11}-\frac{x\sqrt{249}}{200\left(\sqrt{249}\right)^{2}}\right)-1
Rationalize the denominator of \frac{x}{200\sqrt{249}} by multiplying numerator and denominator by \sqrt{249}.
0.1=2y\left(\frac{9}{11}-\frac{x\sqrt{249}}{200\times 249}\right)-1
The square of \sqrt{249} is 249.
0.1=2y\left(\frac{9}{11}-\frac{x\sqrt{249}}{49800}\right)-1
Multiply 200 and 249 to get 49800.
0.1=2y\left(\frac{9\times 49800}{547800}-\frac{11x\sqrt{249}}{547800}\right)-1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 11 and 49800 is 547800. Multiply \frac{9}{11} times \frac{49800}{49800}. Multiply \frac{x\sqrt{249}}{49800} times \frac{11}{11}.
0.1=2y\times \frac{9\times 49800-11x\sqrt{249}}{547800}-1
Since \frac{9\times 49800}{547800} and \frac{11x\sqrt{249}}{547800} have the same denominator, subtract them by subtracting their numerators.
0.1=2y\times \frac{448200-11x\sqrt{249}}{547800}-1
Do the multiplications in 9\times 49800-11x\sqrt{249}.
0.1=\frac{448200-11x\sqrt{249}}{273900}y-1
Cancel out 547800, the greatest common factor in 2 and 547800.
0.1=\frac{\left(448200-11x\sqrt{249}\right)y}{273900}-1
Express \frac{448200-11x\sqrt{249}}{273900}y as a single fraction.
\frac{\left(448200-11x\sqrt{249}\right)y}{273900}-1=0.1
Swap sides so that all variable terms are on the left hand side.
\frac{448200y-11x\sqrt{249}y}{273900}-1=0.1
Use the distributive property to multiply 448200-11x\sqrt{249} by y.
\frac{448200y-11x\sqrt{249}y}{273900}=0.1+1
Add 1 to both sides.
\frac{448200y-11x\sqrt{249}y}{273900}=1.1
Add 0.1 and 1 to get 1.1.
448200y-11x\sqrt{249}y=1.1\times 273900
Multiply both sides by 273900.
448200y-11x\sqrt{249}y=301290
Multiply 1.1 and 273900 to get 301290.
-11x\sqrt{249}y=301290-448200y
Subtract 448200y from both sides.
\left(-11\sqrt{249}y\right)x=301290-448200y
The equation is in standard form.
\frac{\left(-11\sqrt{249}y\right)x}{-11\sqrt{249}y}=\frac{301290-448200y}{-11\sqrt{249}y}
Divide both sides by -11\sqrt{249}y.
x=\frac{301290-448200y}{-11\sqrt{249}y}
Dividing by -11\sqrt{249}y undoes the multiplication by -11\sqrt{249}y.
x=-\frac{10\sqrt{249}\left(121-180y\right)}{11y}
Divide 301290-448200y by -11\sqrt{249}y.
0.1=2y\left(\frac{0.9}{1+0.1}-\frac{x}{\sqrt{9.96\times 10^{6}}}\right)-1
Subtract 0.1 from 1 to get 0.9.
0.1=2y\left(\frac{0.9}{1.1}-\frac{x}{\sqrt{9.96\times 10^{6}}}\right)-1
Add 1 and 0.1 to get 1.1.
0.1=2y\left(\frac{9}{11}-\frac{x}{\sqrt{9.96\times 10^{6}}}\right)-1
Expand \frac{0.9}{1.1} by multiplying both numerator and the denominator by 10.
0.1=2y\left(\frac{9}{11}-\frac{x}{\sqrt{9.96\times 1000000}}\right)-1
Calculate 10 to the power of 6 and get 1000000.
0.1=2y\left(\frac{9}{11}-\frac{x}{\sqrt{9960000}}\right)-1
Multiply 9.96 and 1000000 to get 9960000.
0.1=2y\left(\frac{9}{11}-\frac{x}{200\sqrt{249}}\right)-1
Factor 9960000=200^{2}\times 249. Rewrite the square root of the product \sqrt{200^{2}\times 249} as the product of square roots \sqrt{200^{2}}\sqrt{249}. Take the square root of 200^{2}.
0.1=2y\left(\frac{9}{11}-\frac{x\sqrt{249}}{200\left(\sqrt{249}\right)^{2}}\right)-1
Rationalize the denominator of \frac{x}{200\sqrt{249}} by multiplying numerator and denominator by \sqrt{249}.
0.1=2y\left(\frac{9}{11}-\frac{x\sqrt{249}}{200\times 249}\right)-1
The square of \sqrt{249} is 249.
0.1=2y\left(\frac{9}{11}-\frac{x\sqrt{249}}{49800}\right)-1
Multiply 200 and 249 to get 49800.
0.1=2y\left(\frac{9\times 49800}{547800}-\frac{11x\sqrt{249}}{547800}\right)-1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 11 and 49800 is 547800. Multiply \frac{9}{11} times \frac{49800}{49800}. Multiply \frac{x\sqrt{249}}{49800} times \frac{11}{11}.
0.1=2y\times \frac{9\times 49800-11x\sqrt{249}}{547800}-1
Since \frac{9\times 49800}{547800} and \frac{11x\sqrt{249}}{547800} have the same denominator, subtract them by subtracting their numerators.
0.1=2y\times \frac{448200-11x\sqrt{249}}{547800}-1
Do the multiplications in 9\times 49800-11x\sqrt{249}.
0.1=\frac{448200-11x\sqrt{249}}{273900}y-1
Cancel out 547800, the greatest common factor in 2 and 547800.
0.1=\frac{\left(448200-11x\sqrt{249}\right)y}{273900}-1
Express \frac{448200-11x\sqrt{249}}{273900}y as a single fraction.
\frac{\left(448200-11x\sqrt{249}\right)y}{273900}-1=0.1
Swap sides so that all variable terms are on the left hand side.
\frac{448200y-11x\sqrt{249}y}{273900}-1=0.1
Use the distributive property to multiply 448200-11x\sqrt{249} by y.
\frac{448200y-11x\sqrt{249}y}{273900}=0.1+1
Add 1 to both sides.
\frac{448200y-11x\sqrt{249}y}{273900}=1.1
Add 0.1 and 1 to get 1.1.
448200y-11x\sqrt{249}y=1.1\times 273900
Multiply both sides by 273900.
448200y-11x\sqrt{249}y=301290
Multiply 1.1 and 273900 to get 301290.
\left(448200-11x\sqrt{249}\right)y=301290
Combine all terms containing y.
\left(-11\sqrt{249}x+448200\right)y=301290
The equation is in standard form.
\frac{\left(-11\sqrt{249}x+448200\right)y}{-11\sqrt{249}x+448200}=\frac{301290}{-11\sqrt{249}x+448200}
Divide both sides by 448200-11x\sqrt{249}.
y=\frac{301290}{-11\sqrt{249}x+448200}
Dividing by 448200-11x\sqrt{249} undoes the multiplication by 448200-11x\sqrt{249}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}