Solve for q
q = \frac{\sqrt{4153} - 1}{2} \approx 31.721886971
q=\frac{-\sqrt{4153}-1}{2}\approx -32.721886971
Share
Copied to clipboard
0.1q^{2}+0.1q-103.8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
q=\frac{-0.1±\sqrt{0.1^{2}-4\times 0.1\left(-103.8\right)}}{2\times 0.1}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.1 for a, 0.1 for b, and -103.8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{-0.1±\sqrt{0.01-4\times 0.1\left(-103.8\right)}}{2\times 0.1}
Square 0.1 by squaring both the numerator and the denominator of the fraction.
q=\frac{-0.1±\sqrt{0.01-0.4\left(-103.8\right)}}{2\times 0.1}
Multiply -4 times 0.1.
q=\frac{-0.1±\sqrt{0.01+41.52}}{2\times 0.1}
Multiply -0.4 times -103.8 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
q=\frac{-0.1±\sqrt{41.53}}{2\times 0.1}
Add 0.01 to 41.52 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
q=\frac{-0.1±\frac{\sqrt{4153}}{10}}{2\times 0.1}
Take the square root of 41.53.
q=\frac{-0.1±\frac{\sqrt{4153}}{10}}{0.2}
Multiply 2 times 0.1.
q=\frac{\sqrt{4153}-1}{0.2\times 10}
Now solve the equation q=\frac{-0.1±\frac{\sqrt{4153}}{10}}{0.2} when ± is plus. Add -0.1 to \frac{\sqrt{4153}}{10}.
q=\frac{\sqrt{4153}-1}{2}
Divide \frac{-1+\sqrt{4153}}{10} by 0.2 by multiplying \frac{-1+\sqrt{4153}}{10} by the reciprocal of 0.2.
q=\frac{-\sqrt{4153}-1}{0.2\times 10}
Now solve the equation q=\frac{-0.1±\frac{\sqrt{4153}}{10}}{0.2} when ± is minus. Subtract \frac{\sqrt{4153}}{10} from -0.1.
q=\frac{-\sqrt{4153}-1}{2}
Divide \frac{-1-\sqrt{4153}}{10} by 0.2 by multiplying \frac{-1-\sqrt{4153}}{10} by the reciprocal of 0.2.
q=\frac{\sqrt{4153}-1}{2} q=\frac{-\sqrt{4153}-1}{2}
The equation is now solved.
0.1q^{2}+0.1q-103.8=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
0.1q^{2}+0.1q-103.8-\left(-103.8\right)=-\left(-103.8\right)
Add 103.8 to both sides of the equation.
0.1q^{2}+0.1q=-\left(-103.8\right)
Subtracting -103.8 from itself leaves 0.
0.1q^{2}+0.1q=103.8
Subtract -103.8 from 0.
\frac{0.1q^{2}+0.1q}{0.1}=\frac{103.8}{0.1}
Multiply both sides by 10.
q^{2}+\frac{0.1}{0.1}q=\frac{103.8}{0.1}
Dividing by 0.1 undoes the multiplication by 0.1.
q^{2}+q=\frac{103.8}{0.1}
Divide 0.1 by 0.1 by multiplying 0.1 by the reciprocal of 0.1.
q^{2}+q=1038
Divide 103.8 by 0.1 by multiplying 103.8 by the reciprocal of 0.1.
q^{2}+q+\left(\frac{1}{2}\right)^{2}=1038+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
q^{2}+q+\frac{1}{4}=1038+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
q^{2}+q+\frac{1}{4}=\frac{4153}{4}
Add 1038 to \frac{1}{4}.
\left(q+\frac{1}{2}\right)^{2}=\frac{4153}{4}
Factor q^{2}+q+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(q+\frac{1}{2}\right)^{2}}=\sqrt{\frac{4153}{4}}
Take the square root of both sides of the equation.
q+\frac{1}{2}=\frac{\sqrt{4153}}{2} q+\frac{1}{2}=-\frac{\sqrt{4153}}{2}
Simplify.
q=\frac{\sqrt{4153}-1}{2} q=\frac{-\sqrt{4153}-1}{2}
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}