Solve for R
R=\frac{29}{119}\approx 0.243697479
Share
Copied to clipboard
0.1\left(R+29\right)=R\times 12
Variable R cannot be equal to -29 since division by zero is not defined. Multiply both sides of the equation by R+29.
0.1R+2.9=R\times 12
Use the distributive property to multiply 0.1 by R+29.
0.1R+2.9-R\times 12=0
Subtract R\times 12 from both sides.
-11.9R+2.9=0
Combine 0.1R and -R\times 12 to get -11.9R.
-11.9R=-2.9
Subtract 2.9 from both sides. Anything subtracted from zero gives its negation.
R=\frac{-2.9}{-11.9}
Divide both sides by -11.9.
R=\frac{-29}{-119}
Expand \frac{-2.9}{-11.9} by multiplying both numerator and the denominator by 10.
R=\frac{29}{119}
Fraction \frac{-29}{-119} can be simplified to \frac{29}{119} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}