Solve for L
L=\frac{3210j_{0}+525}{3253}
Solve for j_0
j_{0}=\frac{3253L}{3210}-\frac{35}{214}
Share
Copied to clipboard
0.3253L=0.0525+j_{0}\times 0.321
Swap sides so that all variable terms are on the left hand side.
0.3253L=\frac{321j_{0}}{1000}+0.0525
The equation is in standard form.
\frac{0.3253L}{0.3253}=\frac{\frac{321j_{0}}{1000}+0.0525}{0.3253}
Divide both sides of the equation by 0.3253, which is the same as multiplying both sides by the reciprocal of the fraction.
L=\frac{\frac{321j_{0}}{1000}+0.0525}{0.3253}
Dividing by 0.3253 undoes the multiplication by 0.3253.
L=\frac{3210j_{0}+525}{3253}
Divide 0.0525+\frac{321j_{0}}{1000} by 0.3253 by multiplying 0.0525+\frac{321j_{0}}{1000} by the reciprocal of 0.3253.
j_{0}\times 0.321=0.3253L-0.0525
Subtract 0.0525 from both sides.
0.321j_{0}=\frac{3253L}{10000}-0.0525
The equation is in standard form.
\frac{0.321j_{0}}{0.321}=\frac{\frac{3253L}{10000}-0.0525}{0.321}
Divide both sides of the equation by 0.321, which is the same as multiplying both sides by the reciprocal of the fraction.
j_{0}=\frac{\frac{3253L}{10000}-0.0525}{0.321}
Dividing by 0.321 undoes the multiplication by 0.321.
j_{0}=\frac{3253L}{3210}-\frac{35}{214}
Divide \frac{3253L}{10000}-0.0525 by 0.321 by multiplying \frac{3253L}{10000}-0.0525 by the reciprocal of 0.321.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}