Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

5t^{2}-1.25=0.05
Swap sides so that all variable terms are on the left hand side.
5t^{2}=0.05+1.25
Add 1.25 to both sides.
5t^{2}=1.3
Add 0.05 and 1.25 to get 1.3.
t^{2}=\frac{1.3}{5}
Divide both sides by 5.
t^{2}=\frac{13}{50}
Expand \frac{1.3}{5} by multiplying both numerator and the denominator by 10.
t=\frac{\sqrt{26}}{10} t=-\frac{\sqrt{26}}{10}
Take the square root of both sides of the equation.
5t^{2}-1.25=0.05
Swap sides so that all variable terms are on the left hand side.
5t^{2}-1.25-0.05=0
Subtract 0.05 from both sides.
5t^{2}-1.3=0
Subtract 0.05 from -1.25 to get -1.3.
t=\frac{0±\sqrt{0^{2}-4\times 5\left(-1.3\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 0 for b, and -1.3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\times 5\left(-1.3\right)}}{2\times 5}
Square 0.
t=\frac{0±\sqrt{-20\left(-1.3\right)}}{2\times 5}
Multiply -4 times 5.
t=\frac{0±\sqrt{26}}{2\times 5}
Multiply -20 times -1.3.
t=\frac{0±\sqrt{26}}{10}
Multiply 2 times 5.
t=\frac{\sqrt{26}}{10}
Now solve the equation t=\frac{0±\sqrt{26}}{10} when ± is plus.
t=-\frac{\sqrt{26}}{10}
Now solve the equation t=\frac{0±\sqrt{26}}{10} when ± is minus.
t=\frac{\sqrt{26}}{10} t=-\frac{\sqrt{26}}{10}
The equation is now solved.