Solve for x
x=\frac{1987}{37500d^{2}}
d\neq 0
Solve for d (complex solution)
d=-\frac{\sqrt{29805}x^{-0.5}}{750}
d=\frac{\sqrt{29805}x^{-0.5}}{750}\text{, }x\neq 0
Solve for d
d=\frac{\sqrt{\frac{29805}{x}}}{750}
d=-\frac{\sqrt{\frac{29805}{x}}}{750}\text{, }x>0
Graph
Share
Copied to clipboard
\frac{0.01987}{1.5}=\frac{xd^{2}}{4}
Divide both sides by 1.5.
\frac{1987}{150000}=\frac{xd^{2}}{4}
Expand \frac{0.01987}{1.5} by multiplying both numerator and the denominator by 100000.
\frac{1987}{150000}\times 4=xd^{2}
Multiply both sides by 4.
\frac{1987}{37500}=xd^{2}
Multiply \frac{1987}{150000} and 4 to get \frac{1987}{37500}.
xd^{2}=\frac{1987}{37500}
Swap sides so that all variable terms are on the left hand side.
d^{2}x=\frac{1987}{37500}
The equation is in standard form.
\frac{d^{2}x}{d^{2}}=\frac{\frac{1987}{37500}}{d^{2}}
Divide both sides by d^{2}.
x=\frac{\frac{1987}{37500}}{d^{2}}
Dividing by d^{2} undoes the multiplication by d^{2}.
x=\frac{1987}{37500d^{2}}
Divide \frac{1987}{37500} by d^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}