Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

0.0149x^{2}+8.134x=2624.67
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
0.0149x^{2}+8.134x-2624.67=2624.67-2624.67
Subtract 2624.67 from both sides of the equation.
0.0149x^{2}+8.134x-2624.67=0
Subtracting 2624.67 from itself leaves 0.
x=\frac{-8.134±\sqrt{8.134^{2}-4\times 0.0149\left(-2624.67\right)}}{2\times 0.0149}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.0149 for a, 8.134 for b, and -2624.67 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8.134±\sqrt{66.161956-4\times 0.0149\left(-2624.67\right)}}{2\times 0.0149}
Square 8.134 by squaring both the numerator and the denominator of the fraction.
x=\frac{-8.134±\sqrt{66.161956-0.0596\left(-2624.67\right)}}{2\times 0.0149}
Multiply -4 times 0.0149.
x=\frac{-8.134±\sqrt{\frac{16540489+39107583}{250000}}}{2\times 0.0149}
Multiply -0.0596 times -2624.67 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-8.134±\sqrt{222.592288}}{2\times 0.0149}
Add 66.161956 to 156.430332 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-8.134±\frac{\sqrt{13912018}}{250}}{2\times 0.0149}
Take the square root of 222.592288.
x=\frac{-8.134±\frac{\sqrt{13912018}}{250}}{0.0298}
Multiply 2 times 0.0149.
x=\frac{\frac{\sqrt{13912018}}{250}-\frac{4067}{500}}{0.0298}
Now solve the equation x=\frac{-8.134±\frac{\sqrt{13912018}}{250}}{0.0298} when ± is plus. Add -8.134 to \frac{\sqrt{13912018}}{250}.
x=\frac{20\sqrt{13912018}-40670}{149}
Divide -\frac{4067}{500}+\frac{\sqrt{13912018}}{250} by 0.0298 by multiplying -\frac{4067}{500}+\frac{\sqrt{13912018}}{250} by the reciprocal of 0.0298.
x=\frac{-\frac{\sqrt{13912018}}{250}-\frac{4067}{500}}{0.0298}
Now solve the equation x=\frac{-8.134±\frac{\sqrt{13912018}}{250}}{0.0298} when ± is minus. Subtract \frac{\sqrt{13912018}}{250} from -8.134.
x=\frac{-20\sqrt{13912018}-40670}{149}
Divide -\frac{4067}{500}-\frac{\sqrt{13912018}}{250} by 0.0298 by multiplying -\frac{4067}{500}-\frac{\sqrt{13912018}}{250} by the reciprocal of 0.0298.
x=\frac{20\sqrt{13912018}-40670}{149} x=\frac{-20\sqrt{13912018}-40670}{149}
The equation is now solved.
0.0149x^{2}+8.134x=2624.67
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{0.0149x^{2}+8.134x}{0.0149}=\frac{2624.67}{0.0149}
Divide both sides of the equation by 0.0149, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{8.134}{0.0149}x=\frac{2624.67}{0.0149}
Dividing by 0.0149 undoes the multiplication by 0.0149.
x^{2}+\frac{81340}{149}x=\frac{2624.67}{0.0149}
Divide 8.134 by 0.0149 by multiplying 8.134 by the reciprocal of 0.0149.
x^{2}+\frac{81340}{149}x=\frac{26246700}{149}
Divide 2624.67 by 0.0149 by multiplying 2624.67 by the reciprocal of 0.0149.
x^{2}+\frac{81340}{149}x+\frac{40670}{149}^{2}=\frac{26246700}{149}+\frac{40670}{149}^{2}
Divide \frac{81340}{149}, the coefficient of the x term, by 2 to get \frac{40670}{149}. Then add the square of \frac{40670}{149} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{81340}{149}x+\frac{1654048900}{22201}=\frac{26246700}{149}+\frac{1654048900}{22201}
Square \frac{40670}{149} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{81340}{149}x+\frac{1654048900}{22201}=\frac{5564807200}{22201}
Add \frac{26246700}{149} to \frac{1654048900}{22201} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{40670}{149}\right)^{2}=\frac{5564807200}{22201}
Factor x^{2}+\frac{81340}{149}x+\frac{1654048900}{22201}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{40670}{149}\right)^{2}}=\sqrt{\frac{5564807200}{22201}}
Take the square root of both sides of the equation.
x+\frac{40670}{149}=\frac{20\sqrt{13912018}}{149} x+\frac{40670}{149}=-\frac{20\sqrt{13912018}}{149}
Simplify.
x=\frac{20\sqrt{13912018}-40670}{149} x=\frac{-20\sqrt{13912018}-40670}{149}
Subtract \frac{40670}{149} from both sides of the equation.