Solve for x
x = \frac{10 \sqrt{1274877745} - 206750}{391} \approx 384.409979265
x=\frac{-10\sqrt{1274877745}-206750}{391}\approx -1441.954736298
Graph
Share
Copied to clipboard
0.00391x^{2}+4.135x-2167.32=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4.135±\sqrt{4.135^{2}-4\times 0.00391\left(-2167.32\right)}}{2\times 0.00391}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.00391 for a, 4.135 for b, and -2167.32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4.135±\sqrt{17.098225-4\times 0.00391\left(-2167.32\right)}}{2\times 0.00391}
Square 4.135 by squaring both the numerator and the denominator of the fraction.
x=\frac{-4.135±\sqrt{17.098225-0.01564\left(-2167.32\right)}}{2\times 0.00391}
Multiply -4 times 0.00391.
x=\frac{-4.135±\sqrt{17.098225+33.8968848}}{2\times 0.00391}
Multiply -0.01564 times -2167.32 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-4.135±\sqrt{50.9951098}}{2\times 0.00391}
Add 17.098225 to 33.8968848 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-4.135±\frac{\sqrt{1274877745}}{5000}}{2\times 0.00391}
Take the square root of 50.9951098.
x=\frac{-4.135±\frac{\sqrt{1274877745}}{5000}}{0.00782}
Multiply 2 times 0.00391.
x=\frac{\frac{\sqrt{1274877745}}{5000}-\frac{827}{200}}{0.00782}
Now solve the equation x=\frac{-4.135±\frac{\sqrt{1274877745}}{5000}}{0.00782} when ± is plus. Add -4.135 to \frac{\sqrt{1274877745}}{5000}.
x=\frac{10\sqrt{1274877745}-206750}{391}
Divide -\frac{827}{200}+\frac{\sqrt{1274877745}}{5000} by 0.00782 by multiplying -\frac{827}{200}+\frac{\sqrt{1274877745}}{5000} by the reciprocal of 0.00782.
x=\frac{-\frac{\sqrt{1274877745}}{5000}-\frac{827}{200}}{0.00782}
Now solve the equation x=\frac{-4.135±\frac{\sqrt{1274877745}}{5000}}{0.00782} when ± is minus. Subtract \frac{\sqrt{1274877745}}{5000} from -4.135.
x=\frac{-10\sqrt{1274877745}-206750}{391}
Divide -\frac{827}{200}-\frac{\sqrt{1274877745}}{5000} by 0.00782 by multiplying -\frac{827}{200}-\frac{\sqrt{1274877745}}{5000} by the reciprocal of 0.00782.
x=\frac{10\sqrt{1274877745}-206750}{391} x=\frac{-10\sqrt{1274877745}-206750}{391}
The equation is now solved.
0.00391x^{2}+4.135x-2167.32=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
0.00391x^{2}+4.135x-2167.32-\left(-2167.32\right)=-\left(-2167.32\right)
Add 2167.32 to both sides of the equation.
0.00391x^{2}+4.135x=-\left(-2167.32\right)
Subtracting -2167.32 from itself leaves 0.
0.00391x^{2}+4.135x=2167.32
Subtract -2167.32 from 0.
\frac{0.00391x^{2}+4.135x}{0.00391}=\frac{2167.32}{0.00391}
Divide both sides of the equation by 0.00391, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{4.135}{0.00391}x=\frac{2167.32}{0.00391}
Dividing by 0.00391 undoes the multiplication by 0.00391.
x^{2}+\frac{413500}{391}x=\frac{2167.32}{0.00391}
Divide 4.135 by 0.00391 by multiplying 4.135 by the reciprocal of 0.00391.
x^{2}+\frac{413500}{391}x=\frac{216732000}{391}
Divide 2167.32 by 0.00391 by multiplying 2167.32 by the reciprocal of 0.00391.
x^{2}+\frac{413500}{391}x+\frac{206750}{391}^{2}=\frac{216732000}{391}+\frac{206750}{391}^{2}
Divide \frac{413500}{391}, the coefficient of the x term, by 2 to get \frac{206750}{391}. Then add the square of \frac{206750}{391} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{413500}{391}x+\frac{42745562500}{152881}=\frac{216732000}{391}+\frac{42745562500}{152881}
Square \frac{206750}{391} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{413500}{391}x+\frac{42745562500}{152881}=\frac{127487774500}{152881}
Add \frac{216732000}{391} to \frac{42745562500}{152881} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{206750}{391}\right)^{2}=\frac{127487774500}{152881}
Factor x^{2}+\frac{413500}{391}x+\frac{42745562500}{152881}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{206750}{391}\right)^{2}}=\sqrt{\frac{127487774500}{152881}}
Take the square root of both sides of the equation.
x+\frac{206750}{391}=\frac{10\sqrt{1274877745}}{391} x+\frac{206750}{391}=-\frac{10\sqrt{1274877745}}{391}
Simplify.
x=\frac{10\sqrt{1274877745}-206750}{391} x=\frac{-10\sqrt{1274877745}-206750}{391}
Subtract \frac{206750}{391} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}