Solve for x
x = \frac{65}{8} = 8\frac{1}{8} = 8.125
Graph
Share
Copied to clipboard
9-2\sqrt{2x+4}=0
Swap sides so that all variable terms are on the left hand side.
-2\sqrt{2x+4}=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
\sqrt{2x+4}=\frac{-9}{-2}
Divide both sides by -2.
\sqrt{2x+4}=\frac{9}{2}
Fraction \frac{-9}{-2} can be simplified to \frac{9}{2} by removing the negative sign from both the numerator and the denominator.
2x+4=\frac{81}{4}
Square both sides of the equation.
2x+4-4=\frac{81}{4}-4
Subtract 4 from both sides of the equation.
2x=\frac{81}{4}-4
Subtracting 4 from itself leaves 0.
2x=\frac{65}{4}
Subtract 4 from \frac{81}{4}.
\frac{2x}{2}=\frac{\frac{65}{4}}{2}
Divide both sides by 2.
x=\frac{\frac{65}{4}}{2}
Dividing by 2 undoes the multiplication by 2.
x=\frac{65}{8}
Divide \frac{65}{4} by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}