Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

60x^{2}-600x+1000=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\left(-600\right)±\sqrt{\left(-600\right)^{2}-4\times 60\times 1000}}{2\times 60}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 60 for a, -600 for b, and 1000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-600\right)±\sqrt{360000-4\times 60\times 1000}}{2\times 60}
Square -600.
x=\frac{-\left(-600\right)±\sqrt{360000-240\times 1000}}{2\times 60}
Multiply -4 times 60.
x=\frac{-\left(-600\right)±\sqrt{360000-240000}}{2\times 60}
Multiply -240 times 1000.
x=\frac{-\left(-600\right)±\sqrt{120000}}{2\times 60}
Add 360000 to -240000.
x=\frac{-\left(-600\right)±200\sqrt{3}}{2\times 60}
Take the square root of 120000.
x=\frac{600±200\sqrt{3}}{2\times 60}
The opposite of -600 is 600.
x=\frac{600±200\sqrt{3}}{120}
Multiply 2 times 60.
x=\frac{200\sqrt{3}+600}{120}
Now solve the equation x=\frac{600±200\sqrt{3}}{120} when ± is plus. Add 600 to 200\sqrt{3}.
x=\frac{5\sqrt{3}}{3}+5
Divide 600+200\sqrt{3} by 120.
x=\frac{600-200\sqrt{3}}{120}
Now solve the equation x=\frac{600±200\sqrt{3}}{120} when ± is minus. Subtract 200\sqrt{3} from 600.
x=-\frac{5\sqrt{3}}{3}+5
Divide 600-200\sqrt{3} by 120.
x=\frac{5\sqrt{3}}{3}+5 x=-\frac{5\sqrt{3}}{3}+5
The equation is now solved.
60x^{2}-600x+1000=0
Swap sides so that all variable terms are on the left hand side.
60x^{2}-600x=-1000
Subtract 1000 from both sides. Anything subtracted from zero gives its negation.
\frac{60x^{2}-600x}{60}=-\frac{1000}{60}
Divide both sides by 60.
x^{2}+\left(-\frac{600}{60}\right)x=-\frac{1000}{60}
Dividing by 60 undoes the multiplication by 60.
x^{2}-10x=-\frac{1000}{60}
Divide -600 by 60.
x^{2}-10x=-\frac{50}{3}
Reduce the fraction \frac{-1000}{60} to lowest terms by extracting and canceling out 20.
x^{2}-10x+\left(-5\right)^{2}=-\frac{50}{3}+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-\frac{50}{3}+25
Square -5.
x^{2}-10x+25=\frac{25}{3}
Add -\frac{50}{3} to 25.
\left(x-5\right)^{2}=\frac{25}{3}
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{\frac{25}{3}}
Take the square root of both sides of the equation.
x-5=\frac{5\sqrt{3}}{3} x-5=-\frac{5\sqrt{3}}{3}
Simplify.
x=\frac{5\sqrt{3}}{3}+5 x=-\frac{5\sqrt{3}}{3}+5
Add 5 to both sides of the equation.