Solve for x
x=\frac{5\sqrt{3}}{3}+5\approx 7.886751346
x=-\frac{5\sqrt{3}}{3}+5\approx 2.113248654
Graph
Share
Copied to clipboard
60x^{2}-600x+1000=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\left(-600\right)±\sqrt{\left(-600\right)^{2}-4\times 60\times 1000}}{2\times 60}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 60 for a, -600 for b, and 1000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-600\right)±\sqrt{360000-4\times 60\times 1000}}{2\times 60}
Square -600.
x=\frac{-\left(-600\right)±\sqrt{360000-240\times 1000}}{2\times 60}
Multiply -4 times 60.
x=\frac{-\left(-600\right)±\sqrt{360000-240000}}{2\times 60}
Multiply -240 times 1000.
x=\frac{-\left(-600\right)±\sqrt{120000}}{2\times 60}
Add 360000 to -240000.
x=\frac{-\left(-600\right)±200\sqrt{3}}{2\times 60}
Take the square root of 120000.
x=\frac{600±200\sqrt{3}}{2\times 60}
The opposite of -600 is 600.
x=\frac{600±200\sqrt{3}}{120}
Multiply 2 times 60.
x=\frac{200\sqrt{3}+600}{120}
Now solve the equation x=\frac{600±200\sqrt{3}}{120} when ± is plus. Add 600 to 200\sqrt{3}.
x=\frac{5\sqrt{3}}{3}+5
Divide 600+200\sqrt{3} by 120.
x=\frac{600-200\sqrt{3}}{120}
Now solve the equation x=\frac{600±200\sqrt{3}}{120} when ± is minus. Subtract 200\sqrt{3} from 600.
x=-\frac{5\sqrt{3}}{3}+5
Divide 600-200\sqrt{3} by 120.
x=\frac{5\sqrt{3}}{3}+5 x=-\frac{5\sqrt{3}}{3}+5
The equation is now solved.
60x^{2}-600x+1000=0
Swap sides so that all variable terms are on the left hand side.
60x^{2}-600x=-1000
Subtract 1000 from both sides. Anything subtracted from zero gives its negation.
\frac{60x^{2}-600x}{60}=-\frac{1000}{60}
Divide both sides by 60.
x^{2}+\left(-\frac{600}{60}\right)x=-\frac{1000}{60}
Dividing by 60 undoes the multiplication by 60.
x^{2}-10x=-\frac{1000}{60}
Divide -600 by 60.
x^{2}-10x=-\frac{50}{3}
Reduce the fraction \frac{-1000}{60} to lowest terms by extracting and canceling out 20.
x^{2}-10x+\left(-5\right)^{2}=-\frac{50}{3}+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-\frac{50}{3}+25
Square -5.
x^{2}-10x+25=\frac{25}{3}
Add -\frac{50}{3} to 25.
\left(x-5\right)^{2}=\frac{25}{3}
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{\frac{25}{3}}
Take the square root of both sides of the equation.
x-5=\frac{5\sqrt{3}}{3} x-5=-\frac{5\sqrt{3}}{3}
Simplify.
x=\frac{5\sqrt{3}}{3}+5 x=-\frac{5\sqrt{3}}{3}+5
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}