Solve for x
x = \frac{\sqrt{9465} - 21}{32} \approx 2.384007236
x=\frac{-\sqrt{9465}-21}{32}\approx -3.696507236
Graph
Share
Copied to clipboard
141-21x-16x^{2}=0
Swap sides so that all variable terms are on the left hand side.
-16x^{2}-21x+141=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\left(-16\right)\times 141}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, -21 for b, and 141 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-21\right)±\sqrt{441-4\left(-16\right)\times 141}}{2\left(-16\right)}
Square -21.
x=\frac{-\left(-21\right)±\sqrt{441+64\times 141}}{2\left(-16\right)}
Multiply -4 times -16.
x=\frac{-\left(-21\right)±\sqrt{441+9024}}{2\left(-16\right)}
Multiply 64 times 141.
x=\frac{-\left(-21\right)±\sqrt{9465}}{2\left(-16\right)}
Add 441 to 9024.
x=\frac{21±\sqrt{9465}}{2\left(-16\right)}
The opposite of -21 is 21.
x=\frac{21±\sqrt{9465}}{-32}
Multiply 2 times -16.
x=\frac{\sqrt{9465}+21}{-32}
Now solve the equation x=\frac{21±\sqrt{9465}}{-32} when ± is plus. Add 21 to \sqrt{9465}.
x=\frac{-\sqrt{9465}-21}{32}
Divide 21+\sqrt{9465} by -32.
x=\frac{21-\sqrt{9465}}{-32}
Now solve the equation x=\frac{21±\sqrt{9465}}{-32} when ± is minus. Subtract \sqrt{9465} from 21.
x=\frac{\sqrt{9465}-21}{32}
Divide 21-\sqrt{9465} by -32.
x=\frac{-\sqrt{9465}-21}{32} x=\frac{\sqrt{9465}-21}{32}
The equation is now solved.
141-21x-16x^{2}=0
Swap sides so that all variable terms are on the left hand side.
-21x-16x^{2}=-141
Subtract 141 from both sides. Anything subtracted from zero gives its negation.
-16x^{2}-21x=-141
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-16x^{2}-21x}{-16}=-\frac{141}{-16}
Divide both sides by -16.
x^{2}+\left(-\frac{21}{-16}\right)x=-\frac{141}{-16}
Dividing by -16 undoes the multiplication by -16.
x^{2}+\frac{21}{16}x=-\frac{141}{-16}
Divide -21 by -16.
x^{2}+\frac{21}{16}x=\frac{141}{16}
Divide -141 by -16.
x^{2}+\frac{21}{16}x+\left(\frac{21}{32}\right)^{2}=\frac{141}{16}+\left(\frac{21}{32}\right)^{2}
Divide \frac{21}{16}, the coefficient of the x term, by 2 to get \frac{21}{32}. Then add the square of \frac{21}{32} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{21}{16}x+\frac{441}{1024}=\frac{141}{16}+\frac{441}{1024}
Square \frac{21}{32} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{21}{16}x+\frac{441}{1024}=\frac{9465}{1024}
Add \frac{141}{16} to \frac{441}{1024} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{21}{32}\right)^{2}=\frac{9465}{1024}
Factor x^{2}+\frac{21}{16}x+\frac{441}{1024}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{21}{32}\right)^{2}}=\sqrt{\frac{9465}{1024}}
Take the square root of both sides of the equation.
x+\frac{21}{32}=\frac{\sqrt{9465}}{32} x+\frac{21}{32}=-\frac{\sqrt{9465}}{32}
Simplify.
x=\frac{\sqrt{9465}-21}{32} x=\frac{-\sqrt{9465}-21}{32}
Subtract \frac{21}{32} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}