Solve for x
x = \frac{100 \sqrt{218}}{327} \approx 4.51523641
x = -\frac{100 \sqrt{218}}{327} \approx -4.51523641
Graph
Share
Copied to clipboard
0=100-\frac{981}{200}x^{2}
Multiply \frac{1}{2} and 9.81 to get \frac{981}{200}.
100-\frac{981}{200}x^{2}=0
Swap sides so that all variable terms are on the left hand side.
-\frac{981}{200}x^{2}=-100
Subtract 100 from both sides. Anything subtracted from zero gives its negation.
x^{2}=-100\left(-\frac{200}{981}\right)
Multiply both sides by -\frac{200}{981}, the reciprocal of -\frac{981}{200}.
x^{2}=\frac{20000}{981}
Multiply -100 and -\frac{200}{981} to get \frac{20000}{981}.
x=\frac{100\sqrt{218}}{327} x=-\frac{100\sqrt{218}}{327}
Take the square root of both sides of the equation.
0=100-\frac{981}{200}x^{2}
Multiply \frac{1}{2} and 9.81 to get \frac{981}{200}.
100-\frac{981}{200}x^{2}=0
Swap sides so that all variable terms are on the left hand side.
-\frac{981}{200}x^{2}+100=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{981}{200}\right)\times 100}}{2\left(-\frac{981}{200}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{981}{200} for a, 0 for b, and 100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{981}{200}\right)\times 100}}{2\left(-\frac{981}{200}\right)}
Square 0.
x=\frac{0±\sqrt{\frac{981}{50}\times 100}}{2\left(-\frac{981}{200}\right)}
Multiply -4 times -\frac{981}{200}.
x=\frac{0±\sqrt{1962}}{2\left(-\frac{981}{200}\right)}
Multiply \frac{981}{50} times 100.
x=\frac{0±3\sqrt{218}}{2\left(-\frac{981}{200}\right)}
Take the square root of 1962.
x=\frac{0±3\sqrt{218}}{-\frac{981}{100}}
Multiply 2 times -\frac{981}{200}.
x=-\frac{100\sqrt{218}}{327}
Now solve the equation x=\frac{0±3\sqrt{218}}{-\frac{981}{100}} when ± is plus.
x=\frac{100\sqrt{218}}{327}
Now solve the equation x=\frac{0±3\sqrt{218}}{-\frac{981}{100}} when ± is minus.
x=-\frac{100\sqrt{218}}{327} x=\frac{100\sqrt{218}}{327}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}