Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

0=100-\frac{981}{200}x^{2}
Multiply \frac{1}{2} and 9.81 to get \frac{981}{200}.
100-\frac{981}{200}x^{2}=0
Swap sides so that all variable terms are on the left hand side.
-\frac{981}{200}x^{2}=-100
Subtract 100 from both sides. Anything subtracted from zero gives its negation.
x^{2}=-100\left(-\frac{200}{981}\right)
Multiply both sides by -\frac{200}{981}, the reciprocal of -\frac{981}{200}.
x^{2}=\frac{20000}{981}
Multiply -100 and -\frac{200}{981} to get \frac{20000}{981}.
x=\frac{100\sqrt{218}}{327} x=-\frac{100\sqrt{218}}{327}
Take the square root of both sides of the equation.
0=100-\frac{981}{200}x^{2}
Multiply \frac{1}{2} and 9.81 to get \frac{981}{200}.
100-\frac{981}{200}x^{2}=0
Swap sides so that all variable terms are on the left hand side.
-\frac{981}{200}x^{2}+100=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{981}{200}\right)\times 100}}{2\left(-\frac{981}{200}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{981}{200} for a, 0 for b, and 100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{981}{200}\right)\times 100}}{2\left(-\frac{981}{200}\right)}
Square 0.
x=\frac{0±\sqrt{\frac{981}{50}\times 100}}{2\left(-\frac{981}{200}\right)}
Multiply -4 times -\frac{981}{200}.
x=\frac{0±\sqrt{1962}}{2\left(-\frac{981}{200}\right)}
Multiply \frac{981}{50} times 100.
x=\frac{0±3\sqrt{218}}{2\left(-\frac{981}{200}\right)}
Take the square root of 1962.
x=\frac{0±3\sqrt{218}}{-\frac{981}{100}}
Multiply 2 times -\frac{981}{200}.
x=-\frac{100\sqrt{218}}{327}
Now solve the equation x=\frac{0±3\sqrt{218}}{-\frac{981}{100}} when ± is plus.
x=\frac{100\sqrt{218}}{327}
Now solve the equation x=\frac{0±3\sqrt{218}}{-\frac{981}{100}} when ± is minus.
x=-\frac{100\sqrt{218}}{327} x=\frac{100\sqrt{218}}{327}
The equation is now solved.