0,625 \times ( 1 \frac { 2 } { 3 } + 3 \frac { 1 } { 6 } ) + \frac { 1 } { 6 } \div 1 \frac { 3 } { 5 } - \frac { 5 } { 8 }
Evaluate
2,5
Factor
\frac{5}{2} = 2\frac{1}{2} = 2.5
Share
Copied to clipboard
0,625\left(\frac{3+2}{3}+\frac{3\times 6+1}{6}\right)+\frac{\frac{1}{6}}{\frac{1\times 5+3}{5}}-\frac{5}{8}
Multiply 1 and 3 to get 3.
0,625\left(\frac{5}{3}+\frac{3\times 6+1}{6}\right)+\frac{\frac{1}{6}}{\frac{1\times 5+3}{5}}-\frac{5}{8}
Add 3 and 2 to get 5.
0,625\left(\frac{5}{3}+\frac{18+1}{6}\right)+\frac{\frac{1}{6}}{\frac{1\times 5+3}{5}}-\frac{5}{8}
Multiply 3 and 6 to get 18.
0,625\left(\frac{5}{3}+\frac{19}{6}\right)+\frac{\frac{1}{6}}{\frac{1\times 5+3}{5}}-\frac{5}{8}
Add 18 and 1 to get 19.
0,625\left(\frac{10}{6}+\frac{19}{6}\right)+\frac{\frac{1}{6}}{\frac{1\times 5+3}{5}}-\frac{5}{8}
Least common multiple of 3 and 6 is 6. Convert \frac{5}{3} and \frac{19}{6} to fractions with denominator 6.
0,625\times \frac{10+19}{6}+\frac{\frac{1}{6}}{\frac{1\times 5+3}{5}}-\frac{5}{8}
Since \frac{10}{6} and \frac{19}{6} have the same denominator, add them by adding their numerators.
0,625\times \frac{29}{6}+\frac{\frac{1}{6}}{\frac{1\times 5+3}{5}}-\frac{5}{8}
Add 10 and 19 to get 29.
\frac{5}{8}\times \frac{29}{6}+\frac{\frac{1}{6}}{\frac{1\times 5+3}{5}}-\frac{5}{8}
Convert decimal number 0,625 to fraction \frac{625}{1000}. Reduce the fraction \frac{625}{1000} to lowest terms by extracting and canceling out 125.
\frac{5\times 29}{8\times 6}+\frac{\frac{1}{6}}{\frac{1\times 5+3}{5}}-\frac{5}{8}
Multiply \frac{5}{8} times \frac{29}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{145}{48}+\frac{\frac{1}{6}}{\frac{1\times 5+3}{5}}-\frac{5}{8}
Do the multiplications in the fraction \frac{5\times 29}{8\times 6}.
\frac{145}{48}+\frac{5}{6\left(1\times 5+3\right)}-\frac{5}{8}
Divide \frac{1}{6} by \frac{1\times 5+3}{5} by multiplying \frac{1}{6} by the reciprocal of \frac{1\times 5+3}{5}.
\frac{145}{48}+\frac{5}{6\left(5+3\right)}-\frac{5}{8}
Multiply 1 and 5 to get 5.
\frac{145}{48}+\frac{5}{6\times 8}-\frac{5}{8}
Add 5 and 3 to get 8.
\frac{145}{48}+\frac{5}{48}-\frac{5}{8}
Multiply 6 and 8 to get 48.
\frac{145+5}{48}-\frac{5}{8}
Since \frac{145}{48} and \frac{5}{48} have the same denominator, add them by adding their numerators.
\frac{150}{48}-\frac{5}{8}
Add 145 and 5 to get 150.
\frac{25}{8}-\frac{5}{8}
Reduce the fraction \frac{150}{48} to lowest terms by extracting and canceling out 6.
\frac{25-5}{8}
Since \frac{25}{8} and \frac{5}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{20}{8}
Subtract 5 from 25 to get 20.
\frac{5}{2}
Reduce the fraction \frac{20}{8} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}