0,6 \sqrt { 75 } - \frac { 2 } { 3 } \sqrt { 27 } + 1,5 \sqrt { 12 }
Evaluate
4\sqrt{3}\approx 6.92820323
Share
Copied to clipboard
0,6\times 5\sqrt{3}-\frac{2}{3}\sqrt{27}+1,5\sqrt{12}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
3\sqrt{3}-\frac{2}{3}\sqrt{27}+1,5\sqrt{12}
Multiply 0,6 and 5 to get 3.
3\sqrt{3}-\frac{2}{3}\times 3\sqrt{3}+1,5\sqrt{12}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
3\sqrt{3}-2\sqrt{3}+1,5\sqrt{12}
Cancel out 3 and 3.
\sqrt{3}+1,5\sqrt{12}
Combine 3\sqrt{3} and -2\sqrt{3} to get \sqrt{3}.
\sqrt{3}+1,5\times 2\sqrt{3}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\sqrt{3}+3\sqrt{3}
Multiply 1,5 and 2 to get 3.
4\sqrt{3}
Combine \sqrt{3} and 3\sqrt{3} to get 4\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}