Verify
false
Share
Copied to clipboard
0-15\left(-\frac{1\times 5+2}{5}\right)=25
Multiply both sides of the equation by 5.
0-15\left(-\frac{5+2}{5}\right)=25
Multiply 1 and 5 to get 5.
0-15\left(-\frac{7}{5}\right)=25
Add 5 and 2 to get 7.
0-\frac{15\left(-7\right)}{5}=25
Express 15\left(-\frac{7}{5}\right) as a single fraction.
0-\frac{-105}{5}=25
Multiply 15 and -7 to get -105.
0-\left(-21\right)=25
Divide -105 by 5 to get -21.
0+21=25
The opposite of -21 is 21.
21=25
Add 0 and 21 to get 21.
\text{false}
Compare 21 and 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}