Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

4n^{2}+2n-1600<0
Swap sides so that all variable terms are on the left hand side. This changes the sign direction.
4n^{2}+2n-1600=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
n=\frac{-2±\sqrt{2^{2}-4\times 4\left(-1600\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 4 for a, 2 for b, and -1600 for c in the quadratic formula.
n=\frac{-2±2\sqrt{6401}}{8}
Do the calculations.
n=\frac{\sqrt{6401}-1}{4} n=\frac{-\sqrt{6401}-1}{4}
Solve the equation n=\frac{-2±2\sqrt{6401}}{8} when ± is plus and when ± is minus.
4\left(n-\frac{\sqrt{6401}-1}{4}\right)\left(n-\frac{-\sqrt{6401}-1}{4}\right)<0
Rewrite the inequality by using the obtained solutions.
n-\frac{\sqrt{6401}-1}{4}>0 n-\frac{-\sqrt{6401}-1}{4}<0
For the product to be negative, n-\frac{\sqrt{6401}-1}{4} and n-\frac{-\sqrt{6401}-1}{4} have to be of the opposite signs. Consider the case when n-\frac{\sqrt{6401}-1}{4} is positive and n-\frac{-\sqrt{6401}-1}{4} is negative.
n\in \emptyset
This is false for any n.
n-\frac{-\sqrt{6401}-1}{4}>0 n-\frac{\sqrt{6401}-1}{4}<0
Consider the case when n-\frac{-\sqrt{6401}-1}{4} is positive and n-\frac{\sqrt{6401}-1}{4} is negative.
n\in \left(\frac{-\sqrt{6401}-1}{4},\frac{\sqrt{6401}-1}{4}\right)
The solution satisfying both inequalities is n\in \left(\frac{-\sqrt{6401}-1}{4},\frac{\sqrt{6401}-1}{4}\right).
n\in \left(\frac{-\sqrt{6401}-1}{4},\frac{\sqrt{6401}-1}{4}\right)
The final solution is the union of the obtained solutions.