Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{2i\pi n_{1}}{\ln(z)}+\log_{z}\left(1-\epsilon \right)\text{, }n_{1}\in \mathrm{Z}\text{, }&\epsilon \neq 1\text{ and }z\neq 1\text{ and }z\neq 0\\x\in \mathrm{C}\text{, }&\epsilon =0\text{ and }z=1\end{matrix}\right.
Solve for z (complex solution)
z=e^{\frac{Im(x)arg(1-\epsilon )+iRe(x)arg(1-\epsilon )}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}-\frac{2iRe(x)\pi n_{1}}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}-\frac{2\pi n_{1}Im(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}\left(|1-\epsilon |\right)^{\frac{Re(x)-iIm(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}
n_{1}\in \mathrm{Z}
Solve for x
\left\{\begin{matrix}x=\log_{z}\left(1-\epsilon \right)\text{, }&\epsilon <1\text{ and }z\neq 1\text{ and }z>0\\x\in \mathrm{R}\text{, }&\left(\epsilon =2\text{ and }Denominator(x)\text{bmod}2=1\text{ and }Numerator(x)\text{bmod}2=1\text{ and }z=-1\right)\text{ or }\left(\epsilon =0\text{ and }z=1\right)\end{matrix}\right.
Solve for z
\left\{\begin{matrix}z=\left(1-\epsilon \right)^{\frac{1}{x}}\text{, }&\left(Numerator(x)\text{bmod}2=1\text{ and }Denominator(x)\text{bmod}2=1\text{ and }\epsilon >1\text{ and }\left(1-\epsilon \right)^{\frac{1}{x}}\neq 0\right)\text{ or }\left(\left(1-\epsilon \right)^{\frac{1}{x}}>0\text{ and }\epsilon <1\text{ and }x\neq 0\right)\text{ or }\left(\left(1-\epsilon \right)^{\frac{1}{x}}<0\text{ and }\epsilon <1\text{ and }x\neq 0\text{ and }Denominator(x)\text{bmod}2=1\right)\\z=-\left(1-\epsilon \right)^{\frac{1}{x}}\text{, }&\left(\epsilon >1\text{ and }Numerator(x)\text{bmod}2=1\text{ and }Numerator(x)\text{bmod}2=0\text{ and }Denominator(x)\text{bmod}2=1\text{ and }\left(1-\epsilon \right)^{\frac{1}{x}}\neq 0\right)\text{ or }\left(\epsilon <1\text{ and }x\neq 0\text{ and }\left(1-\epsilon \right)^{\frac{1}{x}}<0\text{ and }Numerator(x)\text{bmod}2=0\right)\text{ or }\left(\left(1-\epsilon \right)^{\frac{1}{x}}>0\text{ and }\epsilon <1\text{ and }x\neq 0\text{ and }Numerator(x)\text{bmod}2=0\text{ and }Denominator(x)\text{bmod}2=1\right)\\z\neq 0\text{, }&x=0\text{ and }\epsilon =0\end{matrix}\right.
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}