Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-3x+3=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 3}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 3}}{2}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-12}}{2}
Multiply -4 times 3.
x=\frac{-\left(-3\right)±\sqrt{-3}}{2}
Add 9 to -12.
x=\frac{-\left(-3\right)±\sqrt{3}i}{2}
Take the square root of -3.
x=\frac{3±\sqrt{3}i}{2}
The opposite of -3 is 3.
x=\frac{3+\sqrt{3}i}{2}
Now solve the equation x=\frac{3±\sqrt{3}i}{2} when ± is plus. Add 3 to i\sqrt{3}.
x=\frac{-\sqrt{3}i+3}{2}
Now solve the equation x=\frac{3±\sqrt{3}i}{2} when ± is minus. Subtract i\sqrt{3} from 3.
x=\frac{3+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i+3}{2}
The equation is now solved.
x^{2}-3x+3=0
Swap sides so that all variable terms are on the left hand side.
x^{2}-3x=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-3+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=-3+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=-\frac{3}{4}
Add -3 to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=-\frac{3}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{3}i}{2} x-\frac{3}{2}=-\frac{\sqrt{3}i}{2}
Simplify.
x=\frac{3+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i+3}{2}
Add \frac{3}{2} to both sides of the equation.