Solve for g
\left\{\begin{matrix}g=\frac{N_{2}}{m\cos(\alpha )}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\alpha =\pi n_{1}+\frac{\pi }{2}\text{ and }m\neq 0\\g\in \mathrm{R}\text{, }&\left(m=0\text{ or }\exists n_{1}\in \mathrm{Z}\text{ : }\alpha =\pi n_{1}+\frac{\pi }{2}\right)\text{ and }N_{2}=0\end{matrix}\right.
Solve for N_2
N_{2}=gm\cos(\alpha )
Share
Copied to clipboard
N_{2}-mg\cos(\alpha )=0
Swap sides so that all variable terms are on the left hand side.
-mg\cos(\alpha )=-N_{2}
Subtract N_{2} from both sides. Anything subtracted from zero gives its negation.
\left(-m\cos(\alpha )\right)g=-N_{2}
The equation is in standard form.
\frac{\left(-m\cos(\alpha )\right)g}{-m\cos(\alpha )}=-\frac{N_{2}}{-m\cos(\alpha )}
Divide both sides by -m\cos(\alpha ).
g=-\frac{N_{2}}{-m\cos(\alpha )}
Dividing by -m\cos(\alpha ) undoes the multiplication by -m\cos(\alpha ).
g=\frac{N_{2}}{m\cos(\alpha )}
Divide -N_{2} by -m\cos(\alpha ).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}