Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}-100x+288=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\left(-100\right)±\sqrt{\left(-100\right)^{2}-4\times 7\times 288}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -100 for b, and 288 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-100\right)±\sqrt{10000-4\times 7\times 288}}{2\times 7}
Square -100.
x=\frac{-\left(-100\right)±\sqrt{10000-28\times 288}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-100\right)±\sqrt{10000-8064}}{2\times 7}
Multiply -28 times 288.
x=\frac{-\left(-100\right)±\sqrt{1936}}{2\times 7}
Add 10000 to -8064.
x=\frac{-\left(-100\right)±44}{2\times 7}
Take the square root of 1936.
x=\frac{100±44}{2\times 7}
The opposite of -100 is 100.
x=\frac{100±44}{14}
Multiply 2 times 7.
x=\frac{144}{14}
Now solve the equation x=\frac{100±44}{14} when ± is plus. Add 100 to 44.
x=\frac{72}{7}
Reduce the fraction \frac{144}{14} to lowest terms by extracting and canceling out 2.
x=\frac{56}{14}
Now solve the equation x=\frac{100±44}{14} when ± is minus. Subtract 44 from 100.
x=4
Divide 56 by 14.
x=\frac{72}{7} x=4
The equation is now solved.
7x^{2}-100x+288=0
Swap sides so that all variable terms are on the left hand side.
7x^{2}-100x=-288
Subtract 288 from both sides. Anything subtracted from zero gives its negation.
\frac{7x^{2}-100x}{7}=-\frac{288}{7}
Divide both sides by 7.
x^{2}-\frac{100}{7}x=-\frac{288}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}-\frac{100}{7}x+\left(-\frac{50}{7}\right)^{2}=-\frac{288}{7}+\left(-\frac{50}{7}\right)^{2}
Divide -\frac{100}{7}, the coefficient of the x term, by 2 to get -\frac{50}{7}. Then add the square of -\frac{50}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{100}{7}x+\frac{2500}{49}=-\frac{288}{7}+\frac{2500}{49}
Square -\frac{50}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{100}{7}x+\frac{2500}{49}=\frac{484}{49}
Add -\frac{288}{7} to \frac{2500}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{50}{7}\right)^{2}=\frac{484}{49}
Factor x^{2}-\frac{100}{7}x+\frac{2500}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{50}{7}\right)^{2}}=\sqrt{\frac{484}{49}}
Take the square root of both sides of the equation.
x-\frac{50}{7}=\frac{22}{7} x-\frac{50}{7}=-\frac{22}{7}
Simplify.
x=\frac{72}{7} x=4
Add \frac{50}{7} to both sides of the equation.