Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

30x^{2}+11x-30=0
Swap sides so that all variable terms are on the left hand side.
a+b=11 ab=30\left(-30\right)=-900
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 30x^{2}+ax+bx-30. To find a and b, set up a system to be solved.
-1,900 -2,450 -3,300 -4,225 -5,180 -6,150 -9,100 -10,90 -12,75 -15,60 -18,50 -20,45 -25,36 -30,30
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -900.
-1+900=899 -2+450=448 -3+300=297 -4+225=221 -5+180=175 -6+150=144 -9+100=91 -10+90=80 -12+75=63 -15+60=45 -18+50=32 -20+45=25 -25+36=11 -30+30=0
Calculate the sum for each pair.
a=-25 b=36
The solution is the pair that gives sum 11.
\left(30x^{2}-25x\right)+\left(36x-30\right)
Rewrite 30x^{2}+11x-30 as \left(30x^{2}-25x\right)+\left(36x-30\right).
5x\left(6x-5\right)+6\left(6x-5\right)
Factor out 5x in the first and 6 in the second group.
\left(6x-5\right)\left(5x+6\right)
Factor out common term 6x-5 by using distributive property.
x=\frac{5}{6} x=-\frac{6}{5}
To find equation solutions, solve 6x-5=0 and 5x+6=0.
30x^{2}+11x-30=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-11±\sqrt{11^{2}-4\times 30\left(-30\right)}}{2\times 30}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 30 for a, 11 for b, and -30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\times 30\left(-30\right)}}{2\times 30}
Square 11.
x=\frac{-11±\sqrt{121-120\left(-30\right)}}{2\times 30}
Multiply -4 times 30.
x=\frac{-11±\sqrt{121+3600}}{2\times 30}
Multiply -120 times -30.
x=\frac{-11±\sqrt{3721}}{2\times 30}
Add 121 to 3600.
x=\frac{-11±61}{2\times 30}
Take the square root of 3721.
x=\frac{-11±61}{60}
Multiply 2 times 30.
x=\frac{50}{60}
Now solve the equation x=\frac{-11±61}{60} when ± is plus. Add -11 to 61.
x=\frac{5}{6}
Reduce the fraction \frac{50}{60} to lowest terms by extracting and canceling out 10.
x=-\frac{72}{60}
Now solve the equation x=\frac{-11±61}{60} when ± is minus. Subtract 61 from -11.
x=-\frac{6}{5}
Reduce the fraction \frac{-72}{60} to lowest terms by extracting and canceling out 12.
x=\frac{5}{6} x=-\frac{6}{5}
The equation is now solved.
30x^{2}+11x-30=0
Swap sides so that all variable terms are on the left hand side.
30x^{2}+11x=30
Add 30 to both sides. Anything plus zero gives itself.
\frac{30x^{2}+11x}{30}=\frac{30}{30}
Divide both sides by 30.
x^{2}+\frac{11}{30}x=\frac{30}{30}
Dividing by 30 undoes the multiplication by 30.
x^{2}+\frac{11}{30}x=1
Divide 30 by 30.
x^{2}+\frac{11}{30}x+\left(\frac{11}{60}\right)^{2}=1+\left(\frac{11}{60}\right)^{2}
Divide \frac{11}{30}, the coefficient of the x term, by 2 to get \frac{11}{60}. Then add the square of \frac{11}{60} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{11}{30}x+\frac{121}{3600}=1+\frac{121}{3600}
Square \frac{11}{60} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{11}{30}x+\frac{121}{3600}=\frac{3721}{3600}
Add 1 to \frac{121}{3600}.
\left(x+\frac{11}{60}\right)^{2}=\frac{3721}{3600}
Factor x^{2}+\frac{11}{30}x+\frac{121}{3600}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{60}\right)^{2}}=\sqrt{\frac{3721}{3600}}
Take the square root of both sides of the equation.
x+\frac{11}{60}=\frac{61}{60} x+\frac{11}{60}=-\frac{61}{60}
Simplify.
x=\frac{5}{6} x=-\frac{6}{5}
Subtract \frac{11}{60} from both sides of the equation.