Solve for w
w = \frac{\sqrt{142} - 4}{3} \approx 2.638791763
w=\frac{-\sqrt{142}-4}{3}\approx -5.305458429
Share
Copied to clipboard
3w^{2}+8w-42=0
Swap sides so that all variable terms are on the left hand side.
w=\frac{-8±\sqrt{8^{2}-4\times 3\left(-42\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 8 for b, and -42 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-8±\sqrt{64-4\times 3\left(-42\right)}}{2\times 3}
Square 8.
w=\frac{-8±\sqrt{64-12\left(-42\right)}}{2\times 3}
Multiply -4 times 3.
w=\frac{-8±\sqrt{64+504}}{2\times 3}
Multiply -12 times -42.
w=\frac{-8±\sqrt{568}}{2\times 3}
Add 64 to 504.
w=\frac{-8±2\sqrt{142}}{2\times 3}
Take the square root of 568.
w=\frac{-8±2\sqrt{142}}{6}
Multiply 2 times 3.
w=\frac{2\sqrt{142}-8}{6}
Now solve the equation w=\frac{-8±2\sqrt{142}}{6} when ± is plus. Add -8 to 2\sqrt{142}.
w=\frac{\sqrt{142}-4}{3}
Divide -8+2\sqrt{142} by 6.
w=\frac{-2\sqrt{142}-8}{6}
Now solve the equation w=\frac{-8±2\sqrt{142}}{6} when ± is minus. Subtract 2\sqrt{142} from -8.
w=\frac{-\sqrt{142}-4}{3}
Divide -8-2\sqrt{142} by 6.
w=\frac{\sqrt{142}-4}{3} w=\frac{-\sqrt{142}-4}{3}
The equation is now solved.
3w^{2}+8w-42=0
Swap sides so that all variable terms are on the left hand side.
3w^{2}+8w=42
Add 42 to both sides. Anything plus zero gives itself.
\frac{3w^{2}+8w}{3}=\frac{42}{3}
Divide both sides by 3.
w^{2}+\frac{8}{3}w=\frac{42}{3}
Dividing by 3 undoes the multiplication by 3.
w^{2}+\frac{8}{3}w=14
Divide 42 by 3.
w^{2}+\frac{8}{3}w+\left(\frac{4}{3}\right)^{2}=14+\left(\frac{4}{3}\right)^{2}
Divide \frac{8}{3}, the coefficient of the x term, by 2 to get \frac{4}{3}. Then add the square of \frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
w^{2}+\frac{8}{3}w+\frac{16}{9}=14+\frac{16}{9}
Square \frac{4}{3} by squaring both the numerator and the denominator of the fraction.
w^{2}+\frac{8}{3}w+\frac{16}{9}=\frac{142}{9}
Add 14 to \frac{16}{9}.
\left(w+\frac{4}{3}\right)^{2}=\frac{142}{9}
Factor w^{2}+\frac{8}{3}w+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w+\frac{4}{3}\right)^{2}}=\sqrt{\frac{142}{9}}
Take the square root of both sides of the equation.
w+\frac{4}{3}=\frac{\sqrt{142}}{3} w+\frac{4}{3}=-\frac{\sqrt{142}}{3}
Simplify.
w=\frac{\sqrt{142}-4}{3} w=\frac{-\sqrt{142}-4}{3}
Subtract \frac{4}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}