Solve for x
x = \frac{\sqrt{17209} + 187}{40} \approx 7.954576954
x = \frac{187 - \sqrt{17209}}{40} \approx 1.395423046
Graph
Share
Copied to clipboard
20x^{2}-187x+222=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\left(-187\right)±\sqrt{\left(-187\right)^{2}-4\times 20\times 222}}{2\times 20}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 20 for a, -187 for b, and 222 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-187\right)±\sqrt{34969-4\times 20\times 222}}{2\times 20}
Square -187.
x=\frac{-\left(-187\right)±\sqrt{34969-80\times 222}}{2\times 20}
Multiply -4 times 20.
x=\frac{-\left(-187\right)±\sqrt{34969-17760}}{2\times 20}
Multiply -80 times 222.
x=\frac{-\left(-187\right)±\sqrt{17209}}{2\times 20}
Add 34969 to -17760.
x=\frac{187±\sqrt{17209}}{2\times 20}
The opposite of -187 is 187.
x=\frac{187±\sqrt{17209}}{40}
Multiply 2 times 20.
x=\frac{\sqrt{17209}+187}{40}
Now solve the equation x=\frac{187±\sqrt{17209}}{40} when ± is plus. Add 187 to \sqrt{17209}.
x=\frac{187-\sqrt{17209}}{40}
Now solve the equation x=\frac{187±\sqrt{17209}}{40} when ± is minus. Subtract \sqrt{17209} from 187.
x=\frac{\sqrt{17209}+187}{40} x=\frac{187-\sqrt{17209}}{40}
The equation is now solved.
20x^{2}-187x+222=0
Swap sides so that all variable terms are on the left hand side.
20x^{2}-187x=-222
Subtract 222 from both sides. Anything subtracted from zero gives its negation.
\frac{20x^{2}-187x}{20}=-\frac{222}{20}
Divide both sides by 20.
x^{2}-\frac{187}{20}x=-\frac{222}{20}
Dividing by 20 undoes the multiplication by 20.
x^{2}-\frac{187}{20}x=-\frac{111}{10}
Reduce the fraction \frac{-222}{20} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{187}{20}x+\left(-\frac{187}{40}\right)^{2}=-\frac{111}{10}+\left(-\frac{187}{40}\right)^{2}
Divide -\frac{187}{20}, the coefficient of the x term, by 2 to get -\frac{187}{40}. Then add the square of -\frac{187}{40} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{187}{20}x+\frac{34969}{1600}=-\frac{111}{10}+\frac{34969}{1600}
Square -\frac{187}{40} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{187}{20}x+\frac{34969}{1600}=\frac{17209}{1600}
Add -\frac{111}{10} to \frac{34969}{1600} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{187}{40}\right)^{2}=\frac{17209}{1600}
Factor x^{2}-\frac{187}{20}x+\frac{34969}{1600}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{187}{40}\right)^{2}}=\sqrt{\frac{17209}{1600}}
Take the square root of both sides of the equation.
x-\frac{187}{40}=\frac{\sqrt{17209}}{40} x-\frac{187}{40}=-\frac{\sqrt{17209}}{40}
Simplify.
x=\frac{\sqrt{17209}+187}{40} x=\frac{187-\sqrt{17209}}{40}
Add \frac{187}{40} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}