Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+6x+2=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-6±\sqrt{6^{2}-4\times 2\times 2}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 6 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 2\times 2}}{2\times 2}
Square 6.
x=\frac{-6±\sqrt{36-8\times 2}}{2\times 2}
Multiply -4 times 2.
x=\frac{-6±\sqrt{36-16}}{2\times 2}
Multiply -8 times 2.
x=\frac{-6±\sqrt{20}}{2\times 2}
Add 36 to -16.
x=\frac{-6±2\sqrt{5}}{2\times 2}
Take the square root of 20.
x=\frac{-6±2\sqrt{5}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{5}-6}{4}
Now solve the equation x=\frac{-6±2\sqrt{5}}{4} when ± is plus. Add -6 to 2\sqrt{5}.
x=\frac{\sqrt{5}-3}{2}
Divide -6+2\sqrt{5} by 4.
x=\frac{-2\sqrt{5}-6}{4}
Now solve the equation x=\frac{-6±2\sqrt{5}}{4} when ± is minus. Subtract 2\sqrt{5} from -6.
x=\frac{-\sqrt{5}-3}{2}
Divide -6-2\sqrt{5} by 4.
x=\frac{\sqrt{5}-3}{2} x=\frac{-\sqrt{5}-3}{2}
The equation is now solved.
2x^{2}+6x+2=0
Swap sides so that all variable terms are on the left hand side.
2x^{2}+6x=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
\frac{2x^{2}+6x}{2}=-\frac{2}{2}
Divide both sides by 2.
x^{2}+\frac{6}{2}x=-\frac{2}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+3x=-\frac{2}{2}
Divide 6 by 2.
x^{2}+3x=-1
Divide -2 by 2.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-1+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=-1+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{5}{4}
Add -1 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{5}}{2} x+\frac{3}{2}=-\frac{\sqrt{5}}{2}
Simplify.
x=\frac{\sqrt{5}-3}{2} x=\frac{-\sqrt{5}-3}{2}
Subtract \frac{3}{2} from both sides of the equation.