Solve for q
q=1+\sqrt{749}i\approx 1+27.367864367i
q=-\sqrt{749}i+1\approx 1-27.367864367i
Share
Copied to clipboard
2q^{2}-4q+1500=0
Swap sides so that all variable terms are on the left hand side.
q=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\times 1500}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -4 for b, and 1500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{-\left(-4\right)±\sqrt{16-4\times 2\times 1500}}{2\times 2}
Square -4.
q=\frac{-\left(-4\right)±\sqrt{16-8\times 1500}}{2\times 2}
Multiply -4 times 2.
q=\frac{-\left(-4\right)±\sqrt{16-12000}}{2\times 2}
Multiply -8 times 1500.
q=\frac{-\left(-4\right)±\sqrt{-11984}}{2\times 2}
Add 16 to -12000.
q=\frac{-\left(-4\right)±4\sqrt{749}i}{2\times 2}
Take the square root of -11984.
q=\frac{4±4\sqrt{749}i}{2\times 2}
The opposite of -4 is 4.
q=\frac{4±4\sqrt{749}i}{4}
Multiply 2 times 2.
q=\frac{4+4\sqrt{749}i}{4}
Now solve the equation q=\frac{4±4\sqrt{749}i}{4} when ± is plus. Add 4 to 4i\sqrt{749}.
q=1+\sqrt{749}i
Divide 4+4i\sqrt{749} by 4.
q=\frac{-4\sqrt{749}i+4}{4}
Now solve the equation q=\frac{4±4\sqrt{749}i}{4} when ± is minus. Subtract 4i\sqrt{749} from 4.
q=-\sqrt{749}i+1
Divide 4-4i\sqrt{749} by 4.
q=1+\sqrt{749}i q=-\sqrt{749}i+1
The equation is now solved.
2q^{2}-4q+1500=0
Swap sides so that all variable terms are on the left hand side.
2q^{2}-4q=-1500
Subtract 1500 from both sides. Anything subtracted from zero gives its negation.
\frac{2q^{2}-4q}{2}=-\frac{1500}{2}
Divide both sides by 2.
q^{2}+\left(-\frac{4}{2}\right)q=-\frac{1500}{2}
Dividing by 2 undoes the multiplication by 2.
q^{2}-2q=-\frac{1500}{2}
Divide -4 by 2.
q^{2}-2q=-750
Divide -1500 by 2.
q^{2}-2q+1=-750+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
q^{2}-2q+1=-749
Add -750 to 1.
\left(q-1\right)^{2}=-749
Factor q^{2}-2q+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(q-1\right)^{2}}=\sqrt{-749}
Take the square root of both sides of the equation.
q-1=\sqrt{749}i q-1=-\sqrt{749}i
Simplify.
q=1+\sqrt{749}i q=-\sqrt{749}i+1
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}