Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

11250-525x+x^{2}=0
Swap sides so that all variable terms are on the left hand side.
x^{2}-525x+11250=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-525\right)±\sqrt{\left(-525\right)^{2}-4\times 11250}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -525 for b, and 11250 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-525\right)±\sqrt{275625-4\times 11250}}{2}
Square -525.
x=\frac{-\left(-525\right)±\sqrt{275625-45000}}{2}
Multiply -4 times 11250.
x=\frac{-\left(-525\right)±\sqrt{230625}}{2}
Add 275625 to -45000.
x=\frac{-\left(-525\right)±75\sqrt{41}}{2}
Take the square root of 230625.
x=\frac{525±75\sqrt{41}}{2}
The opposite of -525 is 525.
x=\frac{75\sqrt{41}+525}{2}
Now solve the equation x=\frac{525±75\sqrt{41}}{2} when ± is plus. Add 525 to 75\sqrt{41}.
x=\frac{525-75\sqrt{41}}{2}
Now solve the equation x=\frac{525±75\sqrt{41}}{2} when ± is minus. Subtract 75\sqrt{41} from 525.
x=\frac{75\sqrt{41}+525}{2} x=\frac{525-75\sqrt{41}}{2}
The equation is now solved.
11250-525x+x^{2}=0
Swap sides so that all variable terms are on the left hand side.
-525x+x^{2}=-11250
Subtract 11250 from both sides. Anything subtracted from zero gives its negation.
x^{2}-525x=-11250
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-525x+\left(-\frac{525}{2}\right)^{2}=-11250+\left(-\frac{525}{2}\right)^{2}
Divide -525, the coefficient of the x term, by 2 to get -\frac{525}{2}. Then add the square of -\frac{525}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-525x+\frac{275625}{4}=-11250+\frac{275625}{4}
Square -\frac{525}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-525x+\frac{275625}{4}=\frac{230625}{4}
Add -11250 to \frac{275625}{4}.
\left(x-\frac{525}{2}\right)^{2}=\frac{230625}{4}
Factor x^{2}-525x+\frac{275625}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{525}{2}\right)^{2}}=\sqrt{\frac{230625}{4}}
Take the square root of both sides of the equation.
x-\frac{525}{2}=\frac{75\sqrt{41}}{2} x-\frac{525}{2}=-\frac{75\sqrt{41}}{2}
Simplify.
x=\frac{75\sqrt{41}+525}{2} x=\frac{525-75\sqrt{41}}{2}
Add \frac{525}{2} to both sides of the equation.