Solve for H (complex solution)
\left\{\begin{matrix}H=-\frac{x_{H}+1}{z^{x}}\text{, }&x=0\text{ or }z\neq 0\\H\in \mathrm{C}\text{, }&x_{H}=-1\text{ and }z=0\text{ and }x\neq 0\end{matrix}\right.
Solve for H
\left\{\begin{matrix}H=-\frac{x_{H}+1}{z^{x}}\text{, }&z>0\text{ or }\left(Denominator(x)\text{bmod}2=1\text{ and }z<0\right)\\H\in \mathrm{R}\text{, }&x_{H}=-1\text{ and }z=0\text{ and }x>0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{2\pi n_{1}i}{\ln(z)}+\log_{z}\left(-\frac{x_{H}+1}{H}\right)\text{, }n_{1}\in \mathrm{Z}\text{, }&x_{H}\neq -1\text{ and }H\neq 0\text{ and }z\neq 1\text{ and }z\neq 0\\x\in \mathrm{C}\text{, }&\left(x_{H}=-1\text{ and }H=0\right)\text{ or }\left(z=0\text{ and }x_{H}=-1\text{ and }H\neq 0\right)\text{ or }\left(z=1\text{ and }H=-\left(x_{H}+1\right)\text{ and }x_{H}\neq -1\right)\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\log_{z}\left(-\frac{x_{H}+1}{H}\right)\text{, }&\left(H>0\text{ and }x_{H}<-1\text{ and }z\neq 1\text{ and }z>0\right)\text{ or }\left(H<0\text{ and }x_{H}>-1\text{ and }z\neq 1\text{ and }z>0\right)\\x\in \mathrm{R}\text{, }&\left(x_{H}=-1\text{ and }H=0\text{ and }z>0\right)\text{ or }\left(x_{H}=-1\text{ and }H=0\text{ and }z<0\text{ and }Denominator(x)\text{bmod}2=1\right)\text{ or }\left(x_{H}=-\left(H+1\right)\text{ and }H\neq 0\text{ and }z=1\right)\text{ or }\left(x_{H}=H-1\text{ and }Denominator(x)\text{bmod}2=1\text{ and }Numerator(x)\text{bmod}2=1\text{ and }H\neq 0\text{ and }z=-1\right)\\x>0\text{, }&z=0\text{ and }x_{H}=-1\end{matrix}\right.
Share
Copied to clipboard
1+x_{H}+z^{x}H=0
Swap sides so that all variable terms are on the left hand side.
x_{H}+z^{x}H=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
z^{x}H=-1-x_{H}
Subtract x_{H} from both sides.
z^{x}H=-x_{H}-1
The equation is in standard form.
\frac{z^{x}H}{z^{x}}=\frac{-x_{H}-1}{z^{x}}
Divide both sides by z^{x}.
H=\frac{-x_{H}-1}{z^{x}}
Dividing by z^{x} undoes the multiplication by z^{x}.
H=-\frac{x_{H}+1}{z^{x}}
Divide -1-x_{H} by z^{x}.
1+x_{H}+z^{x}H=0
Swap sides so that all variable terms are on the left hand side.
x_{H}+z^{x}H=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
z^{x}H=-1-x_{H}
Subtract x_{H} from both sides.
z^{x}H=-x_{H}-1
The equation is in standard form.
\frac{z^{x}H}{z^{x}}=\frac{-x_{H}-1}{z^{x}}
Divide both sides by z^{x}.
H=\frac{-x_{H}-1}{z^{x}}
Dividing by z^{x} undoes the multiplication by z^{x}.
H=-\frac{x_{H}+1}{z^{x}}
Divide -1-x_{H} by z^{x}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}