Solve for x
x=\frac{\sqrt{5760951}}{6}-400\approx 0.03301947
x=-\frac{\sqrt{5760951}}{6}-400\approx -800.03301947
Graph
Share
Copied to clipboard
0.48x^{2}+384x-12.68=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-384±\sqrt{384^{2}-4\times 0.48\left(-12.68\right)}}{2\times 0.48}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.48 for a, 384 for b, and -12.68 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-384±\sqrt{147456-4\times 0.48\left(-12.68\right)}}{2\times 0.48}
Square 384.
x=\frac{-384±\sqrt{147456-1.92\left(-12.68\right)}}{2\times 0.48}
Multiply -4 times 0.48.
x=\frac{-384±\sqrt{147456+24.3456}}{2\times 0.48}
Multiply -1.92 times -12.68 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-384±\sqrt{147480.3456}}{2\times 0.48}
Add 147456 to 24.3456.
x=\frac{-384±\frac{4\sqrt{5760951}}{25}}{2\times 0.48}
Take the square root of 147480.3456.
x=\frac{-384±\frac{4\sqrt{5760951}}{25}}{0.96}
Multiply 2 times 0.48.
x=\frac{\frac{4\sqrt{5760951}}{25}-384}{0.96}
Now solve the equation x=\frac{-384±\frac{4\sqrt{5760951}}{25}}{0.96} when ± is plus. Add -384 to \frac{4\sqrt{5760951}}{25}.
x=\frac{\sqrt{5760951}}{6}-400
Divide -384+\frac{4\sqrt{5760951}}{25} by 0.96 by multiplying -384+\frac{4\sqrt{5760951}}{25} by the reciprocal of 0.96.
x=\frac{-\frac{4\sqrt{5760951}}{25}-384}{0.96}
Now solve the equation x=\frac{-384±\frac{4\sqrt{5760951}}{25}}{0.96} when ± is minus. Subtract \frac{4\sqrt{5760951}}{25} from -384.
x=-\frac{\sqrt{5760951}}{6}-400
Divide -384-\frac{4\sqrt{5760951}}{25} by 0.96 by multiplying -384-\frac{4\sqrt{5760951}}{25} by the reciprocal of 0.96.
x=\frac{\sqrt{5760951}}{6}-400 x=-\frac{\sqrt{5760951}}{6}-400
The equation is now solved.
0.48x^{2}+384x-12.68=0
Swap sides so that all variable terms are on the left hand side.
0.48x^{2}+384x=12.68
Add 12.68 to both sides. Anything plus zero gives itself.
0.48x^{2}+384x=\frac{317}{25}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{0.48x^{2}+384x}{0.48}=\frac{\frac{317}{25}}{0.48}
Divide both sides of the equation by 0.48, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{384}{0.48}x=\frac{\frac{317}{25}}{0.48}
Dividing by 0.48 undoes the multiplication by 0.48.
x^{2}+800x=\frac{\frac{317}{25}}{0.48}
Divide 384 by 0.48 by multiplying 384 by the reciprocal of 0.48.
x^{2}+800x=\frac{317}{12}
Divide \frac{317}{25} by 0.48 by multiplying \frac{317}{25} by the reciprocal of 0.48.
x^{2}+800x+400^{2}=\frac{317}{12}+400^{2}
Divide 800, the coefficient of the x term, by 2 to get 400. Then add the square of 400 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+800x+160000=\frac{317}{12}+160000
Square 400.
x^{2}+800x+160000=\frac{1920317}{12}
Add \frac{317}{12} to 160000.
\left(x+400\right)^{2}=\frac{1920317}{12}
Factor x^{2}+800x+160000. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+400\right)^{2}}=\sqrt{\frac{1920317}{12}}
Take the square root of both sides of the equation.
x+400=\frac{\sqrt{5760951}}{6} x+400=-\frac{\sqrt{5760951}}{6}
Simplify.
x=\frac{\sqrt{5760951}}{6}-400 x=-\frac{\sqrt{5760951}}{6}-400
Subtract 400 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}