Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}+9x+52=0
Swap sides so that all variable terms are on the left hand side.
a+b=9 ab=-52=-52
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx+52. To find a and b, set up a system to be solved.
-1,52 -2,26 -4,13
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -52.
-1+52=51 -2+26=24 -4+13=9
Calculate the sum for each pair.
a=13 b=-4
The solution is the pair that gives sum 9.
\left(-x^{2}+13x\right)+\left(-4x+52\right)
Rewrite -x^{2}+9x+52 as \left(-x^{2}+13x\right)+\left(-4x+52\right).
-x\left(x-13\right)-4\left(x-13\right)
Factor out -x in the first and -4 in the second group.
\left(x-13\right)\left(-x-4\right)
Factor out common term x-13 by using distributive property.
x=13 x=-4
To find equation solutions, solve x-13=0 and -x-4=0.
-x^{2}+9x+52=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-9±\sqrt{9^{2}-4\left(-1\right)\times 52}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 9 for b, and 52 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\left(-1\right)\times 52}}{2\left(-1\right)}
Square 9.
x=\frac{-9±\sqrt{81+4\times 52}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-9±\sqrt{81+208}}{2\left(-1\right)}
Multiply 4 times 52.
x=\frac{-9±\sqrt{289}}{2\left(-1\right)}
Add 81 to 208.
x=\frac{-9±17}{2\left(-1\right)}
Take the square root of 289.
x=\frac{-9±17}{-2}
Multiply 2 times -1.
x=\frac{8}{-2}
Now solve the equation x=\frac{-9±17}{-2} when ± is plus. Add -9 to 17.
x=-4
Divide 8 by -2.
x=-\frac{26}{-2}
Now solve the equation x=\frac{-9±17}{-2} when ± is minus. Subtract 17 from -9.
x=13
Divide -26 by -2.
x=-4 x=13
The equation is now solved.
-x^{2}+9x+52=0
Swap sides so that all variable terms are on the left hand side.
-x^{2}+9x=-52
Subtract 52 from both sides. Anything subtracted from zero gives its negation.
\frac{-x^{2}+9x}{-1}=-\frac{52}{-1}
Divide both sides by -1.
x^{2}+\frac{9}{-1}x=-\frac{52}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-9x=-\frac{52}{-1}
Divide 9 by -1.
x^{2}-9x=52
Divide -52 by -1.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=52+\left(-\frac{9}{2}\right)^{2}
Divide -9, the coefficient of the x term, by 2 to get -\frac{9}{2}. Then add the square of -\frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-9x+\frac{81}{4}=52+\frac{81}{4}
Square -\frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-9x+\frac{81}{4}=\frac{289}{4}
Add 52 to \frac{81}{4}.
\left(x-\frac{9}{2}\right)^{2}=\frac{289}{4}
Factor x^{2}-9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{289}{4}}
Take the square root of both sides of the equation.
x-\frac{9}{2}=\frac{17}{2} x-\frac{9}{2}=-\frac{17}{2}
Simplify.
x=13 x=-4
Add \frac{9}{2} to both sides of the equation.