Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-9x^{2}+42x-11=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-42±\sqrt{42^{2}-4\left(-9\right)\left(-11\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 42 for b, and -11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-42±\sqrt{1764-4\left(-9\right)\left(-11\right)}}{2\left(-9\right)}
Square 42.
x=\frac{-42±\sqrt{1764+36\left(-11\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-42±\sqrt{1764-396}}{2\left(-9\right)}
Multiply 36 times -11.
x=\frac{-42±\sqrt{1368}}{2\left(-9\right)}
Add 1764 to -396.
x=\frac{-42±6\sqrt{38}}{2\left(-9\right)}
Take the square root of 1368.
x=\frac{-42±6\sqrt{38}}{-18}
Multiply 2 times -9.
x=\frac{6\sqrt{38}-42}{-18}
Now solve the equation x=\frac{-42±6\sqrt{38}}{-18} when ± is plus. Add -42 to 6\sqrt{38}.
x=\frac{7-\sqrt{38}}{3}
Divide -42+6\sqrt{38} by -18.
x=\frac{-6\sqrt{38}-42}{-18}
Now solve the equation x=\frac{-42±6\sqrt{38}}{-18} when ± is minus. Subtract 6\sqrt{38} from -42.
x=\frac{\sqrt{38}+7}{3}
Divide -42-6\sqrt{38} by -18.
x=\frac{7-\sqrt{38}}{3} x=\frac{\sqrt{38}+7}{3}
The equation is now solved.
-9x^{2}+42x-11=0
Swap sides so that all variable terms are on the left hand side.
-9x^{2}+42x=11
Add 11 to both sides. Anything plus zero gives itself.
\frac{-9x^{2}+42x}{-9}=\frac{11}{-9}
Divide both sides by -9.
x^{2}+\frac{42}{-9}x=\frac{11}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}-\frac{14}{3}x=\frac{11}{-9}
Reduce the fraction \frac{42}{-9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{14}{3}x=-\frac{11}{9}
Divide 11 by -9.
x^{2}-\frac{14}{3}x+\left(-\frac{7}{3}\right)^{2}=-\frac{11}{9}+\left(-\frac{7}{3}\right)^{2}
Divide -\frac{14}{3}, the coefficient of the x term, by 2 to get -\frac{7}{3}. Then add the square of -\frac{7}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{14}{3}x+\frac{49}{9}=\frac{-11+49}{9}
Square -\frac{7}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{14}{3}x+\frac{49}{9}=\frac{38}{9}
Add -\frac{11}{9} to \frac{49}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{3}\right)^{2}=\frac{38}{9}
Factor x^{2}-\frac{14}{3}x+\frac{49}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{3}\right)^{2}}=\sqrt{\frac{38}{9}}
Take the square root of both sides of the equation.
x-\frac{7}{3}=\frac{\sqrt{38}}{3} x-\frac{7}{3}=-\frac{\sqrt{38}}{3}
Simplify.
x=\frac{\sqrt{38}+7}{3} x=\frac{7-\sqrt{38}}{3}
Add \frac{7}{3} to both sides of the equation.