Solve for t
t=-7
t=10
Share
Copied to clipboard
-5250+75t^{2}-225t=0
Swap sides so that all variable terms are on the left hand side.
-70+t^{2}-3t=0
Divide both sides by 75.
t^{2}-3t-70=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-3 ab=1\left(-70\right)=-70
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as t^{2}+at+bt-70. To find a and b, set up a system to be solved.
1,-70 2,-35 5,-14 7,-10
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -70.
1-70=-69 2-35=-33 5-14=-9 7-10=-3
Calculate the sum for each pair.
a=-10 b=7
The solution is the pair that gives sum -3.
\left(t^{2}-10t\right)+\left(7t-70\right)
Rewrite t^{2}-3t-70 as \left(t^{2}-10t\right)+\left(7t-70\right).
t\left(t-10\right)+7\left(t-10\right)
Factor out t in the first and 7 in the second group.
\left(t-10\right)\left(t+7\right)
Factor out common term t-10 by using distributive property.
t=10 t=-7
To find equation solutions, solve t-10=0 and t+7=0.
-5250+75t^{2}-225t=0
Swap sides so that all variable terms are on the left hand side.
75t^{2}-225t-5250=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-225\right)±\sqrt{\left(-225\right)^{2}-4\times 75\left(-5250\right)}}{2\times 75}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 75 for a, -225 for b, and -5250 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-225\right)±\sqrt{50625-4\times 75\left(-5250\right)}}{2\times 75}
Square -225.
t=\frac{-\left(-225\right)±\sqrt{50625-300\left(-5250\right)}}{2\times 75}
Multiply -4 times 75.
t=\frac{-\left(-225\right)±\sqrt{50625+1575000}}{2\times 75}
Multiply -300 times -5250.
t=\frac{-\left(-225\right)±\sqrt{1625625}}{2\times 75}
Add 50625 to 1575000.
t=\frac{-\left(-225\right)±1275}{2\times 75}
Take the square root of 1625625.
t=\frac{225±1275}{2\times 75}
The opposite of -225 is 225.
t=\frac{225±1275}{150}
Multiply 2 times 75.
t=\frac{1500}{150}
Now solve the equation t=\frac{225±1275}{150} when ± is plus. Add 225 to 1275.
t=10
Divide 1500 by 150.
t=-\frac{1050}{150}
Now solve the equation t=\frac{225±1275}{150} when ± is minus. Subtract 1275 from 225.
t=-7
Divide -1050 by 150.
t=10 t=-7
The equation is now solved.
-5250+75t^{2}-225t=0
Swap sides so that all variable terms are on the left hand side.
75t^{2}-225t=5250
Add 5250 to both sides. Anything plus zero gives itself.
\frac{75t^{2}-225t}{75}=\frac{5250}{75}
Divide both sides by 75.
t^{2}+\left(-\frac{225}{75}\right)t=\frac{5250}{75}
Dividing by 75 undoes the multiplication by 75.
t^{2}-3t=\frac{5250}{75}
Divide -225 by 75.
t^{2}-3t=70
Divide 5250 by 75.
t^{2}-3t+\left(-\frac{3}{2}\right)^{2}=70+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-3t+\frac{9}{4}=70+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
t^{2}-3t+\frac{9}{4}=\frac{289}{4}
Add 70 to \frac{9}{4}.
\left(t-\frac{3}{2}\right)^{2}=\frac{289}{4}
Factor t^{2}-3t+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{3}{2}\right)^{2}}=\sqrt{\frac{289}{4}}
Take the square root of both sides of the equation.
t-\frac{3}{2}=\frac{17}{2} t-\frac{3}{2}=-\frac{17}{2}
Simplify.
t=10 t=-7
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}