Solve for t
t = \frac{10 \sqrt{3091} + 510}{49} \approx 21.754441326
t=\frac{510-10\sqrt{3091}}{49}\approx -0.938114795
Share
Copied to clipboard
-4.9t^{2}+102t+100=0
Swap sides so that all variable terms are on the left hand side.
t=\frac{-102±\sqrt{102^{2}-4\left(-4.9\right)\times 100}}{2\left(-4.9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4.9 for a, 102 for b, and 100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-102±\sqrt{10404-4\left(-4.9\right)\times 100}}{2\left(-4.9\right)}
Square 102.
t=\frac{-102±\sqrt{10404+19.6\times 100}}{2\left(-4.9\right)}
Multiply -4 times -4.9.
t=\frac{-102±\sqrt{10404+1960}}{2\left(-4.9\right)}
Multiply 19.6 times 100.
t=\frac{-102±\sqrt{12364}}{2\left(-4.9\right)}
Add 10404 to 1960.
t=\frac{-102±2\sqrt{3091}}{2\left(-4.9\right)}
Take the square root of 12364.
t=\frac{-102±2\sqrt{3091}}{-9.8}
Multiply 2 times -4.9.
t=\frac{2\sqrt{3091}-102}{-9.8}
Now solve the equation t=\frac{-102±2\sqrt{3091}}{-9.8} when ± is plus. Add -102 to 2\sqrt{3091}.
t=\frac{510-10\sqrt{3091}}{49}
Divide -102+2\sqrt{3091} by -9.8 by multiplying -102+2\sqrt{3091} by the reciprocal of -9.8.
t=\frac{-2\sqrt{3091}-102}{-9.8}
Now solve the equation t=\frac{-102±2\sqrt{3091}}{-9.8} when ± is minus. Subtract 2\sqrt{3091} from -102.
t=\frac{10\sqrt{3091}+510}{49}
Divide -102-2\sqrt{3091} by -9.8 by multiplying -102-2\sqrt{3091} by the reciprocal of -9.8.
t=\frac{510-10\sqrt{3091}}{49} t=\frac{10\sqrt{3091}+510}{49}
The equation is now solved.
-4.9t^{2}+102t+100=0
Swap sides so that all variable terms are on the left hand side.
-4.9t^{2}+102t=-100
Subtract 100 from both sides. Anything subtracted from zero gives its negation.
\frac{-4.9t^{2}+102t}{-4.9}=-\frac{100}{-4.9}
Divide both sides of the equation by -4.9, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{102}{-4.9}t=-\frac{100}{-4.9}
Dividing by -4.9 undoes the multiplication by -4.9.
t^{2}-\frac{1020}{49}t=-\frac{100}{-4.9}
Divide 102 by -4.9 by multiplying 102 by the reciprocal of -4.9.
t^{2}-\frac{1020}{49}t=\frac{1000}{49}
Divide -100 by -4.9 by multiplying -100 by the reciprocal of -4.9.
t^{2}-\frac{1020}{49}t+\left(-\frac{510}{49}\right)^{2}=\frac{1000}{49}+\left(-\frac{510}{49}\right)^{2}
Divide -\frac{1020}{49}, the coefficient of the x term, by 2 to get -\frac{510}{49}. Then add the square of -\frac{510}{49} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{1020}{49}t+\frac{260100}{2401}=\frac{1000}{49}+\frac{260100}{2401}
Square -\frac{510}{49} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{1020}{49}t+\frac{260100}{2401}=\frac{309100}{2401}
Add \frac{1000}{49} to \frac{260100}{2401} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{510}{49}\right)^{2}=\frac{309100}{2401}
Factor t^{2}-\frac{1020}{49}t+\frac{260100}{2401}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{510}{49}\right)^{2}}=\sqrt{\frac{309100}{2401}}
Take the square root of both sides of the equation.
t-\frac{510}{49}=\frac{10\sqrt{3091}}{49} t-\frac{510}{49}=-\frac{10\sqrt{3091}}{49}
Simplify.
t=\frac{10\sqrt{3091}+510}{49} t=\frac{510-10\sqrt{3091}}{49}
Add \frac{510}{49} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}