Solve for x
x=\frac{\sqrt{73}}{18}+\frac{5}{9}\approx 1.03022243
x=-\frac{\sqrt{73}}{18}+\frac{5}{9}\approx 0.080888681
Graph
Share
Copied to clipboard
0=-36x^{2}+40x-3
Do the multiplications.
-36x^{2}+40x-3=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-40±\sqrt{40^{2}-4\left(-36\right)\left(-3\right)}}{2\left(-36\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -36 for a, 40 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-40±\sqrt{1600-4\left(-36\right)\left(-3\right)}}{2\left(-36\right)}
Square 40.
x=\frac{-40±\sqrt{1600+144\left(-3\right)}}{2\left(-36\right)}
Multiply -4 times -36.
x=\frac{-40±\sqrt{1600-432}}{2\left(-36\right)}
Multiply 144 times -3.
x=\frac{-40±\sqrt{1168}}{2\left(-36\right)}
Add 1600 to -432.
x=\frac{-40±4\sqrt{73}}{2\left(-36\right)}
Take the square root of 1168.
x=\frac{-40±4\sqrt{73}}{-72}
Multiply 2 times -36.
x=\frac{4\sqrt{73}-40}{-72}
Now solve the equation x=\frac{-40±4\sqrt{73}}{-72} when ± is plus. Add -40 to 4\sqrt{73}.
x=-\frac{\sqrt{73}}{18}+\frac{5}{9}
Divide -40+4\sqrt{73} by -72.
x=\frac{-4\sqrt{73}-40}{-72}
Now solve the equation x=\frac{-40±4\sqrt{73}}{-72} when ± is minus. Subtract 4\sqrt{73} from -40.
x=\frac{\sqrt{73}}{18}+\frac{5}{9}
Divide -40-4\sqrt{73} by -72.
x=-\frac{\sqrt{73}}{18}+\frac{5}{9} x=\frac{\sqrt{73}}{18}+\frac{5}{9}
The equation is now solved.
0=-36x^{2}+40x-3
Do the multiplications.
-36x^{2}+40x-3=0
Swap sides so that all variable terms are on the left hand side.
-36x^{2}+40x=3
Add 3 to both sides. Anything plus zero gives itself.
\frac{-36x^{2}+40x}{-36}=\frac{3}{-36}
Divide both sides by -36.
x^{2}+\frac{40}{-36}x=\frac{3}{-36}
Dividing by -36 undoes the multiplication by -36.
x^{2}-\frac{10}{9}x=\frac{3}{-36}
Reduce the fraction \frac{40}{-36} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{10}{9}x=-\frac{1}{12}
Reduce the fraction \frac{3}{-36} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{10}{9}x+\left(-\frac{5}{9}\right)^{2}=-\frac{1}{12}+\left(-\frac{5}{9}\right)^{2}
Divide -\frac{10}{9}, the coefficient of the x term, by 2 to get -\frac{5}{9}. Then add the square of -\frac{5}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{10}{9}x+\frac{25}{81}=-\frac{1}{12}+\frac{25}{81}
Square -\frac{5}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{10}{9}x+\frac{25}{81}=\frac{73}{324}
Add -\frac{1}{12} to \frac{25}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{9}\right)^{2}=\frac{73}{324}
Factor x^{2}-\frac{10}{9}x+\frac{25}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{9}\right)^{2}}=\sqrt{\frac{73}{324}}
Take the square root of both sides of the equation.
x-\frac{5}{9}=\frac{\sqrt{73}}{18} x-\frac{5}{9}=-\frac{\sqrt{73}}{18}
Simplify.
x=\frac{\sqrt{73}}{18}+\frac{5}{9} x=-\frac{\sqrt{73}}{18}+\frac{5}{9}
Add \frac{5}{9} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}