Solve for x
x=\frac{\sqrt{10}}{2}-1\approx 0.58113883
x=-\frac{\sqrt{10}}{2}-1\approx -2.58113883
Graph
Share
Copied to clipboard
-2x^{2}-4x+3=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-2\right)\times 3}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -4 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-2\right)\times 3}}{2\left(-2\right)}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+8\times 3}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-4\right)±\sqrt{16+24}}{2\left(-2\right)}
Multiply 8 times 3.
x=\frac{-\left(-4\right)±\sqrt{40}}{2\left(-2\right)}
Add 16 to 24.
x=\frac{-\left(-4\right)±2\sqrt{10}}{2\left(-2\right)}
Take the square root of 40.
x=\frac{4±2\sqrt{10}}{2\left(-2\right)}
The opposite of -4 is 4.
x=\frac{4±2\sqrt{10}}{-4}
Multiply 2 times -2.
x=\frac{2\sqrt{10}+4}{-4}
Now solve the equation x=\frac{4±2\sqrt{10}}{-4} when ± is plus. Add 4 to 2\sqrt{10}.
x=-\frac{\sqrt{10}}{2}-1
Divide 4+2\sqrt{10} by -4.
x=\frac{4-2\sqrt{10}}{-4}
Now solve the equation x=\frac{4±2\sqrt{10}}{-4} when ± is minus. Subtract 2\sqrt{10} from 4.
x=\frac{\sqrt{10}}{2}-1
Divide 4-2\sqrt{10} by -4.
x=-\frac{\sqrt{10}}{2}-1 x=\frac{\sqrt{10}}{2}-1
The equation is now solved.
-2x^{2}-4x+3=0
Swap sides so that all variable terms are on the left hand side.
-2x^{2}-4x=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
\frac{-2x^{2}-4x}{-2}=-\frac{3}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{4}{-2}\right)x=-\frac{3}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+2x=-\frac{3}{-2}
Divide -4 by -2.
x^{2}+2x=\frac{3}{2}
Divide -3 by -2.
x^{2}+2x+1^{2}=\frac{3}{2}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=\frac{3}{2}+1
Square 1.
x^{2}+2x+1=\frac{5}{2}
Add \frac{3}{2} to 1.
\left(x+1\right)^{2}=\frac{5}{2}
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{5}{2}}
Take the square root of both sides of the equation.
x+1=\frac{\sqrt{10}}{2} x+1=-\frac{\sqrt{10}}{2}
Simplify.
x=\frac{\sqrt{10}}{2}-1 x=-\frac{\sqrt{10}}{2}-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}