Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

0=-2\left(x^{2}-4x+4\right)-1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
0=-2x^{2}+8x-8-1
Use the distributive property to multiply -2 by x^{2}-4x+4.
0=-2x^{2}+8x-9
Subtract 1 from -8 to get -9.
-2x^{2}+8x-9=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-8±\sqrt{8^{2}-4\left(-2\right)\left(-9\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 8 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-2\right)\left(-9\right)}}{2\left(-2\right)}
Square 8.
x=\frac{-8±\sqrt{64+8\left(-9\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-8±\sqrt{64-72}}{2\left(-2\right)}
Multiply 8 times -9.
x=\frac{-8±\sqrt{-8}}{2\left(-2\right)}
Add 64 to -72.
x=\frac{-8±2\sqrt{2}i}{2\left(-2\right)}
Take the square root of -8.
x=\frac{-8±2\sqrt{2}i}{-4}
Multiply 2 times -2.
x=\frac{-8+2\sqrt{2}i}{-4}
Now solve the equation x=\frac{-8±2\sqrt{2}i}{-4} when ± is plus. Add -8 to 2i\sqrt{2}.
x=-\frac{\sqrt{2}i}{2}+2
Divide -8+2i\sqrt{2} by -4.
x=\frac{-2\sqrt{2}i-8}{-4}
Now solve the equation x=\frac{-8±2\sqrt{2}i}{-4} when ± is minus. Subtract 2i\sqrt{2} from -8.
x=\frac{\sqrt{2}i}{2}+2
Divide -8-2i\sqrt{2} by -4.
x=-\frac{\sqrt{2}i}{2}+2 x=\frac{\sqrt{2}i}{2}+2
The equation is now solved.
0=-2\left(x^{2}-4x+4\right)-1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
0=-2x^{2}+8x-8-1
Use the distributive property to multiply -2 by x^{2}-4x+4.
0=-2x^{2}+8x-9
Subtract 1 from -8 to get -9.
-2x^{2}+8x-9=0
Swap sides so that all variable terms are on the left hand side.
-2x^{2}+8x=9
Add 9 to both sides. Anything plus zero gives itself.
\frac{-2x^{2}+8x}{-2}=\frac{9}{-2}
Divide both sides by -2.
x^{2}+\frac{8}{-2}x=\frac{9}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-4x=\frac{9}{-2}
Divide 8 by -2.
x^{2}-4x=-\frac{9}{2}
Divide 9 by -2.
x^{2}-4x+\left(-2\right)^{2}=-\frac{9}{2}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-\frac{9}{2}+4
Square -2.
x^{2}-4x+4=-\frac{1}{2}
Add -\frac{9}{2} to 4.
\left(x-2\right)^{2}=-\frac{1}{2}
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-\frac{1}{2}}
Take the square root of both sides of the equation.
x-2=\frac{\sqrt{2}i}{2} x-2=-\frac{\sqrt{2}i}{2}
Simplify.
x=\frac{\sqrt{2}i}{2}+2 x=-\frac{\sqrt{2}i}{2}+2
Add 2 to both sides of the equation.