Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{4}{3}x^{2}+\frac{19}{6}x+\frac{5}{2}=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\frac{19}{6}±\sqrt{\left(\frac{19}{6}\right)^{2}-4\left(-\frac{4}{3}\right)\times \frac{5}{2}}}{2\left(-\frac{4}{3}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{4}{3} for a, \frac{19}{6} for b, and \frac{5}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{19}{6}±\sqrt{\frac{361}{36}-4\left(-\frac{4}{3}\right)\times \frac{5}{2}}}{2\left(-\frac{4}{3}\right)}
Square \frac{19}{6} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{19}{6}±\sqrt{\frac{361}{36}+\frac{16}{3}\times \frac{5}{2}}}{2\left(-\frac{4}{3}\right)}
Multiply -4 times -\frac{4}{3}.
x=\frac{-\frac{19}{6}±\sqrt{\frac{361}{36}+\frac{40}{3}}}{2\left(-\frac{4}{3}\right)}
Multiply \frac{16}{3} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{19}{6}±\sqrt{\frac{841}{36}}}{2\left(-\frac{4}{3}\right)}
Add \frac{361}{36} to \frac{40}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{19}{6}±\frac{29}{6}}{2\left(-\frac{4}{3}\right)}
Take the square root of \frac{841}{36}.
x=\frac{-\frac{19}{6}±\frac{29}{6}}{-\frac{8}{3}}
Multiply 2 times -\frac{4}{3}.
x=\frac{\frac{5}{3}}{-\frac{8}{3}}
Now solve the equation x=\frac{-\frac{19}{6}±\frac{29}{6}}{-\frac{8}{3}} when ± is plus. Add -\frac{19}{6} to \frac{29}{6} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{5}{8}
Divide \frac{5}{3} by -\frac{8}{3} by multiplying \frac{5}{3} by the reciprocal of -\frac{8}{3}.
x=-\frac{8}{-\frac{8}{3}}
Now solve the equation x=\frac{-\frac{19}{6}±\frac{29}{6}}{-\frac{8}{3}} when ± is minus. Subtract \frac{29}{6} from -\frac{19}{6} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=3
Divide -8 by -\frac{8}{3} by multiplying -8 by the reciprocal of -\frac{8}{3}.
x=-\frac{5}{8} x=3
The equation is now solved.
-\frac{4}{3}x^{2}+\frac{19}{6}x+\frac{5}{2}=0
Swap sides so that all variable terms are on the left hand side.
-\frac{4}{3}x^{2}+\frac{19}{6}x=-\frac{5}{2}
Subtract \frac{5}{2} from both sides. Anything subtracted from zero gives its negation.
\frac{-\frac{4}{3}x^{2}+\frac{19}{6}x}{-\frac{4}{3}}=-\frac{\frac{5}{2}}{-\frac{4}{3}}
Divide both sides of the equation by -\frac{4}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{19}{6}}{-\frac{4}{3}}x=-\frac{\frac{5}{2}}{-\frac{4}{3}}
Dividing by -\frac{4}{3} undoes the multiplication by -\frac{4}{3}.
x^{2}-\frac{19}{8}x=-\frac{\frac{5}{2}}{-\frac{4}{3}}
Divide \frac{19}{6} by -\frac{4}{3} by multiplying \frac{19}{6} by the reciprocal of -\frac{4}{3}.
x^{2}-\frac{19}{8}x=\frac{15}{8}
Divide -\frac{5}{2} by -\frac{4}{3} by multiplying -\frac{5}{2} by the reciprocal of -\frac{4}{3}.
x^{2}-\frac{19}{8}x+\left(-\frac{19}{16}\right)^{2}=\frac{15}{8}+\left(-\frac{19}{16}\right)^{2}
Divide -\frac{19}{8}, the coefficient of the x term, by 2 to get -\frac{19}{16}. Then add the square of -\frac{19}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{19}{8}x+\frac{361}{256}=\frac{15}{8}+\frac{361}{256}
Square -\frac{19}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{19}{8}x+\frac{361}{256}=\frac{841}{256}
Add \frac{15}{8} to \frac{361}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{19}{16}\right)^{2}=\frac{841}{256}
Factor x^{2}-\frac{19}{8}x+\frac{361}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{19}{16}\right)^{2}}=\sqrt{\frac{841}{256}}
Take the square root of both sides of the equation.
x-\frac{19}{16}=\frac{29}{16} x-\frac{19}{16}=-\frac{29}{16}
Simplify.
x=3 x=-\frac{5}{8}
Add \frac{19}{16} to both sides of the equation.