Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

0=-\frac{1}{20}x^{4}+\frac{11}{10}x^{2}+\frac{9}{4}
Reduce the fraction \frac{45}{20} to lowest terms by extracting and canceling out 5.
-\frac{1}{20}x^{4}+\frac{11}{10}x^{2}+\frac{9}{4}=0
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{20}t^{2}+\frac{11}{10}t+\frac{9}{4}=0
Substitute t for x^{2}.
t=\frac{-\frac{11}{10}±\sqrt{\left(\frac{11}{10}\right)^{2}-4\left(-\frac{1}{20}\right)\times \frac{9}{4}}}{-\frac{1}{20}\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -\frac{1}{20} for a, \frac{11}{10} for b, and \frac{9}{4} for c in the quadratic formula.
t=\frac{-\frac{11}{10}±\frac{1}{10}\sqrt{166}}{-\frac{1}{10}}
Do the calculations.
t=11-\sqrt{166} t=\sqrt{166}+11
Solve the equation t=\frac{-\frac{11}{10}±\frac{1}{10}\sqrt{166}}{-\frac{1}{10}} when ± is plus and when ± is minus.
x=-i\sqrt{-\left(11-\sqrt{166}\right)} x=i\sqrt{-\left(11-\sqrt{166}\right)} x=-\sqrt{\sqrt{166}+11} x=\sqrt{\sqrt{166}+11}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
0=-\frac{1}{20}x^{4}+\frac{11}{10}x^{2}+\frac{9}{4}
Reduce the fraction \frac{45}{20} to lowest terms by extracting and canceling out 5.
-\frac{1}{20}x^{4}+\frac{11}{10}x^{2}+\frac{9}{4}=0
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{20}t^{2}+\frac{11}{10}t+\frac{9}{4}=0
Substitute t for x^{2}.
t=\frac{-\frac{11}{10}±\sqrt{\left(\frac{11}{10}\right)^{2}-4\left(-\frac{1}{20}\right)\times \frac{9}{4}}}{-\frac{1}{20}\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -\frac{1}{20} for a, \frac{11}{10} for b, and \frac{9}{4} for c in the quadratic formula.
t=\frac{-\frac{11}{10}±\frac{1}{10}\sqrt{166}}{-\frac{1}{10}}
Do the calculations.
t=11-\sqrt{166} t=\sqrt{166}+11
Solve the equation t=\frac{-\frac{11}{10}±\frac{1}{10}\sqrt{166}}{-\frac{1}{10}} when ± is plus and when ± is minus.
x=\sqrt{\sqrt{166}+11} x=-\sqrt{\sqrt{166}+11}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.