Solve for x (complex solution)
x=i\sqrt{\sqrt{166}-11}\approx 1.372624758i
x=-i\sqrt{\sqrt{166}-11}\approx -0-1.372624758i
x=-\sqrt{\sqrt{166}+11}\approx -4.887136045
x=\sqrt{\sqrt{166}+11}\approx 4.887136045
Solve for x
x=-\sqrt{\sqrt{166}+11}\approx -4.887136045
x=\sqrt{\sqrt{166}+11}\approx 4.887136045
Graph
Share
Copied to clipboard
0=-\frac{1}{20}x^{4}+\frac{11}{10}x^{2}+\frac{9}{4}
Reduce the fraction \frac{45}{20} to lowest terms by extracting and canceling out 5.
-\frac{1}{20}x^{4}+\frac{11}{10}x^{2}+\frac{9}{4}=0
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{20}t^{2}+\frac{11}{10}t+\frac{9}{4}=0
Substitute t for x^{2}.
t=\frac{-\frac{11}{10}±\sqrt{\left(\frac{11}{10}\right)^{2}-4\left(-\frac{1}{20}\right)\times \frac{9}{4}}}{-\frac{1}{20}\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -\frac{1}{20} for a, \frac{11}{10} for b, and \frac{9}{4} for c in the quadratic formula.
t=\frac{-\frac{11}{10}±\frac{1}{10}\sqrt{166}}{-\frac{1}{10}}
Do the calculations.
t=11-\sqrt{166} t=\sqrt{166}+11
Solve the equation t=\frac{-\frac{11}{10}±\frac{1}{10}\sqrt{166}}{-\frac{1}{10}} when ± is plus and when ± is minus.
x=-i\sqrt{-\left(11-\sqrt{166}\right)} x=i\sqrt{-\left(11-\sqrt{166}\right)} x=-\sqrt{\sqrt{166}+11} x=\sqrt{\sqrt{166}+11}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
0=-\frac{1}{20}x^{4}+\frac{11}{10}x^{2}+\frac{9}{4}
Reduce the fraction \frac{45}{20} to lowest terms by extracting and canceling out 5.
-\frac{1}{20}x^{4}+\frac{11}{10}x^{2}+\frac{9}{4}=0
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{20}t^{2}+\frac{11}{10}t+\frac{9}{4}=0
Substitute t for x^{2}.
t=\frac{-\frac{11}{10}±\sqrt{\left(\frac{11}{10}\right)^{2}-4\left(-\frac{1}{20}\right)\times \frac{9}{4}}}{-\frac{1}{20}\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -\frac{1}{20} for a, \frac{11}{10} for b, and \frac{9}{4} for c in the quadratic formula.
t=\frac{-\frac{11}{10}±\frac{1}{10}\sqrt{166}}{-\frac{1}{10}}
Do the calculations.
t=11-\sqrt{166} t=\sqrt{166}+11
Solve the equation t=\frac{-\frac{11}{10}±\frac{1}{10}\sqrt{166}}{-\frac{1}{10}} when ± is plus and when ± is minus.
x=\sqrt{\sqrt{166}+11} x=-\sqrt{\sqrt{166}+11}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}